Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:53:58.073Z Has data issue: false hasContentIssue false

Nanoimprint Lithography with UV-Curable Hyperbranched Polymer Nanocomposites for Optical Biosensing Applications

Published online by Cambridge University Press:  01 February 2011

Valérie Geiser
Affiliation:
[email protected], EPFL, Lausanne, Switzerland
Yves Leterrier
Affiliation:
Jan-Anders Månson
Affiliation:
[email protected], EPFL, Lausanne, Switzerland
Rosendo Sanjines
Affiliation:
[email protected], EPFL, Lausanne, Switzerland
Guy Voirin
Affiliation:
[email protected], CSEM, Neuchâtel, Switzerland
Max Wiki
Affiliation:
[email protected], Dynetix AG, Landquart, Switzerland
Get access

Abstract

Polymer nanocomposite gratings with a 363 nm period and a 12 nm step height were replicated using a glass master in a rapid, low-pressure imprint process. The composite materials were based on a UV-curable acrylated hyperbranched polymer and nanosized SiO2 particles. The influence of particle fraction up to 25 vol%, process pressure and UV intensity on the grating geometry was analyzed using atomic force microscopy. The period of the grating was found to be identical to that of the glass master for all investigated conditions. It was shown that the gel point of the nanocomposite was an important factor that determined the stability as well as the dimensions of the imprinted structure. However, a distortion of the grating was observed with increasing fraction of SiO2, which was correlated to the increased internal stress of the composite. Wavelength interrogated optical sensors were produced by depositing a high refractive index TiO2 layer on the composite gratings. The laser signal strength of the polymer sensors was equal to that of the reference high precision glass sensor with 10-12 g/mm2 sensitivity. The strength was lower for the nanocomposites due to propagation losses argued to result from residual porosity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jansen, W. T. M., Bruggen, J. T. van der, Verhoef, J. and Fluit, A. C., Drug Resist. Update 9 (3), 123133 (2006).Google Scholar
2 Cottier, K., Wiki, M., Voirin, G., Gao, H. and Kunz, R. E., Sensor. Actuat. A-Chem. 91 (1–3), 241251 (2003).Google Scholar
3 Adrian, J., Pasche, S., Pinacho, D. G., Font, H., Diserens, J. M., Sanchez-Baeza, F., Granier, B., Voirin, G. and Marco, M. P., Trac-Trend. Anal. Chem. 28 (6), 769777 (2009).Google Scholar
4 Suarez, G., Jin, Y. H., Auerswald, J., Berchtold, S., Knapp, H. F., Diserens, J. M., Leterrier, Y., Månson, J.-A. E. and Voirin, G., Lab. Chip. 9 (11), 16251630 (2009).Google Scholar
5 Csete, M., Kohazi-Kis, A., Megyesi, V., Osvay, K., Bor, Z., Pietralla, M. and Marti, O., Org. Electron. 8 (2–3), 148160 (2007).Google Scholar
6 Kocabas, A. and Aydinli, A., Opt. Express 14 (22), 1022810232 (2006).Google Scholar
7 Austin, M. D., Ge, H. X., Wu, W., Li, M. T., Yu, Z. N., Wasserman, D., Lyon, S. A. and Chou, S. Y., Appl. Phys. Lett. 84 (26), 52995301 (2004).Google Scholar
8 Chou, S. Y., Krauss, P. R. and Renstrom, P. J., J. Vac. Sci. Technol. B 14 (6), 41294133 (1996).Google Scholar
9 Ding, Y., Ro, H. W., Germer, T. A., Douglas, J. F., Okerberg, B. C., Karim, A. and Soles, C. L., ACS Nano 1 (2), 8492 (2007).Google Scholar
10 Bowman, C. N. and Peppas, N. A., Macromolecules 24 (8), 19141920 (1991).Google Scholar
11 Lange, J., Toll, S., Månson, J.-A. E. and Hult, A., Polymer 36 (16), 31353141 (1995).Google Scholar
12 Hawker, C. J., Lee, R. and Frechet, J. M. J., J. Am. Chem. Soc. 113 (12), 45834588 (1991).Google Scholar
13 Jin, Y. H., Cho, Y. H., Schmidt, L. E., Leterrier, Y. and Månson, J.-A. E., J. Micromech. Microeng. 17 (6), 11471153 (2007).Google Scholar
14 Schmidt, L. E., Yi, S., Jin, Y. H., Leterrier, Y., Cho, Y. H. and Månson, J.-A. E., J. Micromech. Microeng. 18 (4), 45022 (2008).Google Scholar
15 Schmidt, L. E., Leterrier, Y., Schmah, D., Månson, J.-A. E., James, D., Gustavsson, E. and Svensson, L. S., Appl, J.. Polym. Sci. 104 (4), 23662376 (2007).Google Scholar
16 Andrzejewska, E., Prog. Poly. Sci. 26 (4), 605665 (2001).Google Scholar
17 Geiser, V., Leterrier, Y. and Månson, J.-A. E., J. Appl. Polym. Sci. 114 (3), 19541963 (2009).Google Scholar
18 Plummer, C. J. G., Garamszegi, L., Leterrier, Y., Rodlert, M. and Månson, J.-A. E., Chem. Mater. 14 (2), 486488 (2002).Google Scholar
19 Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R. E., J. Compos. Mater. 40 (17), 15111575 (2006).Google Scholar
20 Magnusson, H., Malmstrom, E. and Hult, A., Macromol. Rapid Comm. 20 (8), 453457 (1999).Google Scholar
21 Geiser, V., Jin, Y. H., Leterrier, Y. and Månson, J.-A. E., submitted to Macromol. Symp. (2009).Google Scholar
22 Cottier, K., Kunz, R. E. and Herzig, H. P., Jpn J. Appl. Phys. Part 1. 43 (8B), 57425746 (2004).Google Scholar
23 Wiki, M. and Kunz, R. E., Opt. Lett. 25 (7), 463465 (2000).Google Scholar