No CrossRef data available.
Article contents
Nanofluidic capillaries produced via femtosecond laser induced delamination of thin thermal oxide films from Si(100) substrates
Published online by Cambridge University Press: 26 February 2011
Abstract
Highly selective and repeatable delamination of thermal oxide films from Si(100) substrates has been performed using single and multiple femtosecond laser pulses forming bubbles or blisters. By overlapping the bubbles laterally, tubes or capillaries can be formed with a range of volumes suitable for nanofluidics. By scanning the sample through the laser using an automated translation stage, patterns of tubes with arbitrary complexity can be formed, while the scan velocity can easily control the volume of the tubes. The production time for capillaries in this fashion is considerably less than with other lithographic techniques, while the proximity of the tubes to the underlying silicon substrate yields the possibility for integrated devices. The mechanism responsible for the delamination will be discussed and the optimal laser and sample translation conditions will be presented which provide the most uniform tubes. Atomic force microscopy and optical microscopy of capillaries with a range of volumes will be presented.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 901: Symposium R – Assembly at the Nanoscale – Toward Functional Nanostructured Materials , 2005 , 0901-Ra16-36-Rb16-36
- Copyright
- Copyright © Materials Research Society 2006