Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:34:30.721Z Has data issue: false hasContentIssue false

Nanofabrication of Vertically Aligned Carbon Nanofibers for Contact Characterization

Published online by Cambridge University Press:  01 February 2011

Yusuke Ominami
Affiliation:
[email protected], Santa Clara University, Center for Nanostructures, 500 El Camino Real, Santa Clara, CA, 95053, United States, 408-554-6817
Quoc Ngo
Affiliation:
[email protected], Santa Clara University, Center for Nanostructures, 500 El Camino Real, Santa Clara, CA, 95053, United States
Makoto Suzuki
Affiliation:
[email protected], Santa Clara University, Center for Nanostructures, 500 El Camino Real, Santa Clara, CA, 95053, United States
Kevin Mcilwrath
Affiliation:
[email protected], Hitachi High Technologies America, Pleasanton, CA, 94588, United States
Konrad Jarausch
Affiliation:
[email protected], Hitachi High Technologies America, Pleasanton, CA, 94588, United States
Alan M Cassell
Affiliation:
[email protected], NASA Ames Research Center, Center for Nanotechnology, Moffett Field, CA, 94035, United States
Jun Li
Affiliation:
[email protected], NASA Ames Research Center, Center for Nanotechnology, Moffett Field, CA, 94035, United States
Cary Y Yang
Affiliation:
[email protected], Santa Clara University, Center for Nanostructures, 500 El Camino Real, Santa Clara, CA, 95053, United States
Get access

Abstract

Recent studies in nanostructural characterization for on-chip interconnect applications using carbon nanofibers (CNFs) are presented. In this paper, we propose a novel technique, for the purpose of characterizing interfacial structures of vertically aligned CNFs for cross-sectional imaging with scanning transmission electron microscopy (STEM). In this technique, vertically aligned CNFs are selectively grown, by plasma-enhanced chemical vapor deposition (PECVD), on a substrate comprising a narrow strip (width ~100nm) fabricated by focused ion beam (FIB). Using high-resolution STEM, we show that CNFs with diameters ranging from 10 -100 nm exhibit very similar graphitic layer morphologies at the base contact interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Martel, R., Schmidt, T., Shea, H. R., Hertel, T. and Avouris, Ph., Appl. Phys. Lett. 73, 2447 (1998)Google Scholar
[2] Kreupl, F., Graham, A. P., Duesberg, G. S., Steinhogl, W., Liebau, M., Unger, U. and Honlein, W., Microelectron. Eng. 64, 399 (2002)Google Scholar
[3] Li, J., Stevens, R., Delzeit, L., Ng, H. T., Cassell, A., Han, J., and Meyyappan, M., Appl. Phys. Lett. 81, 910 (2002)Google Scholar
[4] Li, J., Ye, Q., Cassell, A., Ng, H. T., Stevens, R., Han, J., and Meyyappan, M., Appl. Phys. Lett. 82, 2491 (2003)Google Scholar
[5] Cui, H., Yang, X., Simpson, M., Lowndes, D., and Varela, M., Appl. Phys. Lett. 84, 4077 (2004)Google Scholar
[6] Ominami, Y., Ngo, Q., Austin, A. J., Yoong, H., Cassell, A. M., Cruden, B. A., Li, J., Meyyappan, M., and Yang, C. Y., Appl. Phys. Lett. 87, 233105 (2005)Google Scholar
[7] Kato, N. I., J. Electron. Microsc. 53, 451 (2004)Google Scholar
[8] Cruden, B. A., Cassell, A. M., Ye, Q. and Meyyappan, M., J. Appl. Phys. 94, 4070 (2003)Google Scholar
[9] Merkulov, V. I., Guillorn, M. A., Lowndes, D. H., and Simpson, M. L., Appl. Phys. Lett. 79, 1178 (2001)Google Scholar
[10] Merkulov, V. I., Lowndes, D. H., Wei, Y. Y., Eres, G. and Voelkl, E., Appl. Phys. Lett. 76, 3555 (2000)Google Scholar
[11] Ge, S., Jiang, K., Lu, X., Chen, Y., Wang, R., and Fan, S., Adv. Mater. 17, 56 (2005)Google Scholar