Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T09:24:47.187Z Has data issue: false hasContentIssue false

Nanofabrication of Materials with a Scanning Tunneling Microscope

Published online by Cambridge University Press:  21 February 2011

Seiichi Kondo
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama Saitama 350–03 Japan
Seiji Geike
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama Saitama 350–03 Japan
Mark Lutwyche
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama Saitama 350–03 Japan
Yasuo Wada
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama Saitama 350–03 Japan
Get access

Abstract

The mechanism of nanofabrication with a scanning tunneling microscope (STM) is investigated. We report experiments both in ultra-high vacuum (UHV) and in air, using several kinds of materials to understand the mechanism systematically. Threshold bias voltages, which are defined as the voltages above which etching is possible under the STM tip, have a linear dependence on the binding energies of the materials. Therefore, the STM nanofabrication mechanism is attributed to the local sublimation of surface atoms induced by tunneling electrons (SITE: Sublimation Induced by Tunneling Electrons). It is also ascribed to the oxidation process by adsorbed water for nanofabrication in air (CRITE: Chemical Reaction Induced by Tunneling Electrons).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Eigler, D. M., Lutz, C. P. and Rudge, W. E., Nature 352, 600 (1991).Google Scholar
[2] Wada, Y., Uda, T., Lutwyche, M., Kondo, S. and Heike, S., J. Appl. Phys. 74, 7321 (1993).Google Scholar
[3] Mamin, H. J. and Rugar, D., Phys. Rev. Lett. 72, 1128 (1994);Google Scholar
Pascual, J. I., Mendez, J., Gomez-Herrero, J., Baro, A. M., Garcia, N. and Binh, Vu Thien, Phys. Rev. Lett. 72, 1129 (1994).Google Scholar
[4] Li, Y. Z., Vazquez, L., Piner, R., Andres, R. P. and Reifenberger, R., Appl. Phys. Lett. 54, 1424 (1989).Google Scholar
[5] Becker, R. S., Higashi, G. S., Chabal, Y. J. and Becker, A. J., Phys. Rev. Lett. 65, 1917 (1990).Google Scholar
[6] Dagata, J. A., Schneir, J., Harary, H. H., Evans, C. J., Postek, M. T. and Bennett, J., Appl. Phys. Lett. 56, 2001 (1990).Google Scholar
[7] Kondo, S., Lutwyche, M. and Wada, Y., Appl. Surf. Sci. 75, 39 (1994).Google Scholar
[8] Tsong, T. T., Phys. Rev. B 44, 13703 (1991).Google Scholar
[9] Albrecht, T. R., Dovek, M. M., Kirk, M. D., Lang, C. A., Quate, C. F. and Smith, D. P. E., Appl. Phys. Lett. 55, 1727 (1989).Google Scholar
[10] Brandon, D. G., in Field-Ion Microscopy, edited by Hren, J. J. and Ranganathan, S. (Plenum, New York, 1968), p. 33.Google Scholar
[11] Lyo, I. -W. and Avouris, Ph., Science 253, 173 (1991);Google Scholar
Avouris, Ph. and Lyo, I. -W., Appl. Surf. Sci. 60/61, 426 (1992).Google Scholar
[12] Desorption Induced by Electronic Transitions, DIET-I, edited by Traum, M. M., Tolk, N. H., Tully, J. C. and Madey, T. E., Springer Ser. Chem. Phys. 24, (Springer, Berlin, Heidelberg, 1993).Google Scholar
[13] Verbruggen, A. H., IBM J. Res. Develop. 32, 93 (1988).Google Scholar
[14] Ichinokawa, T., Izumi, H., Haginoya, C. and Itoh, H., Phys. Rev. B 47, 9654 (1993).Google Scholar
[15] Rabe, J. P. and Buchholz, S., Appl. Phys. Lett. 58, 702 (1991).Google Scholar
[16] Chang, C. S., Su, W. B. and Tsong, T. T., Phys. Rev. Lett. 72, 574 (1994).Google Scholar
[17] Becker, R. S., Golvchenko, J. A. and Swartzentruber, B. S., Nature 325, 419 (1987).Google Scholar
[18] Huang, J. L., Sung, U. E. and Lieber, C. M., Appl. Phys. Lett. 61, 1528 (1992).Google Scholar
[19] Hosoki, S. and Hasegawa, T., Oyo buturi 62, 155 (1993).Google Scholar
[20] Kobayashi, A., Grey, F., Williams, R. S. and Aono, M., Science 259, 1724 (1993).Google Scholar
[21] McCarley, R. L., Hendricks, S. A. and Bard, Allen J., J. Phys. Chem. 96, 10089 (1992).Google Scholar