Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:35:26.623Z Has data issue: false hasContentIssue false

Nanofabrication Based on Ion Beam-Laser Interactions with Self-Assembly of Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Naoki Kishimoto
Affiliation:
[email protected], National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan, 81-29-863-5433, 81-29-863-5571
K. Saito
Affiliation:
[email protected], National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan
Jin Pan
Affiliation:
[email protected], Univ. of Tsukuba, Tsukuba, N/A, Japan
H. Wang
Affiliation:
[email protected], National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan
Y. Takeda
Affiliation:
[email protected], National Institute for Materials Science, Quantum Beam Center, 3-13 Sakura, Tsukuba, 305-0003, Japan
Get access

Abstract

Ion beam-based techniques offer various possibilities for robust spatial control of nanoparticles. Since ion implantation is inherently good at depth control of solutes or nanoparticles, additional lateral control may lead to 3D control of nanoparticles. We pursue a lateral-control method of nanoparticle assembly by controlling photon-energy field under ion implantation. Laser is irradiated into a-SiO2, either sequentially or simultaneously with ion implantation. Ions of 60 keV Cu- or 3 MeV Cu2+ and photons of 532 nm are used to study effects on nanoparticle evolution. Simultaneous laser irradiation under ion implantation enhances surface plasmon resonance (SPR), i.e., nanoparticle precipitation, while sequential laser irradiation of 532 nm tends to cause a decay of SPR, i.e., dissolution of Cu nanoparticles. The energy-field perturbation of laser, interactive with nanoparticle evolution, can be used for controlling nanoparticle assembly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For instance, Brown, A.D., George, H.B., Aziz, M.J. and Erlebacher, J.D., Materials Research Society Symposium Proceedings 792, R7.8 (2004).Google Scholar
2. Loeschner, H., Stengl, G., Kaesmaier, R. and Wolter, A., J. Vac. Sci. Technol. B 19 (2001) 2520.Google Scholar
3. Jiang, X., Ji, Q., Ji, L., Chang, A. and Leung, K-N., J. Vac. Sci. Technol. B 21 (2003) 2724.Google Scholar
4. Plaksin, O.A., Takeda, Y., Amekura, H. and Kishimoto, N., J. Appl. Phys. 99 (2006) 044307.Google Scholar
5. Hache, F., Ricard, D., Flytzanis, C., J. Opt. Soc. Am. B 3 (1986) 1647.Google Scholar
6. Takeda, Y., Plaksin, O., Lu, L. and Kishimoto, N., Nucl. Instrum. & Meth. in Phys. Res. B242 (2006) 194.Google Scholar
7. Maier, S. A., Brongersma, M.L., Kik, P.G., Meltzer, S., Requicha, A.A.G. and Atwater, H.A., Adv. Mater. 13 (2001) 1501.Google Scholar
8. Dostalek, J., Jiang, J., Ladd, J., Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors, Springer (2006).Google Scholar
9. Fromknecht, R., Linker, G., Sun, K., Zhu, S., Wang, L.M., Veen, A. van, Huis, M.A. van, Weimann, T., Wang, J., Niemeyer, J., Eichhorn, F. and Wang, T., Mat. Res. Soc. Symp. Proc. 792 (2004) R8.3.1.Google Scholar
10. Morita, T., Kanda, K., Haruyama, Y. and Matsui, S., Japanese. J.Appl. Phys., 44 (2005) 3341.Google Scholar
11. Kishimoto, N., Plaksin, O.A., Masuo, K., Okubo, N., Umeda, N. and Takeda, Y., Nucl. Instrum. & Meth. in Phys. Res. B242 (2006) 186.Google Scholar
12. Pan, J., Wang, H., Takeda, Y., Umeda, N., Kono, K., Amekura, H. and Kishimoto, N., Nucl. Instrum. & Meth. B257 (2007) 585.Google Scholar
13. Takeda, Y., Plaksin, O.A., Lu, J. and Kishimoto, N., Vacuum 80 (2006) 776.Google Scholar
14. Ishikawa, J, Tsuji, H, Toyota, Y., Gotoh, Y., Matsuda, K., Tanjyo, M. and Sakaki, S., Nucl. Instrum. & Meth. in Phys. Res. B96, 7 (1995).Google Scholar
15. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985), Chap 8.Google Scholar
16. Umeda, N., Kishimoto, N., Takeda, Y. and Lee, C.G., Nucl. Instrum. & Meth. B (2000) 864.Google Scholar
17. Weller, D., Baglin, J.E.E., Kellock, A.J., Hannibal, K.A., Toney, M.F., Kusiski, G., Lang, S., Folks, L., Best, M.E. and Terris, B.D., J. Appl. Phys., 87 (2000) 5768.Google Scholar
18. Kishimoto, N., Umeda, N., Takeda, Y., Lee, C.G., and Gritsyna, V.T., Nucl. Instrum. & Meth, in Phys. Res. B 148 (1999) 1017.Google Scholar
19. Boldyryeva, H., Umeda, N., Plaksin, Oleg, Takeda, Y. and Kishimoto, N., Surf. & Coat. Tech., 196 (2005) 373.Google Scholar
20. McBrayer, J.D., Swanson, R.M. and Sigmon, T.W., Electrochem, J.. Soc., 133 (1986) 1242.Google Scholar
21. Sasajima, Y. and Tanimura, K., Phys. Rev. B68 (2003) 14204.Google Scholar
22. Masuo, K., Plaksin, O.A., Fudamoto, Y., Okubo, N., Takeda, Y., Kishimoto, N., Nucl. Instrum. & Meth. in Phys. Res. B 247 (2006) 268270.Google Scholar
23. Wang, H., Takeda, Y., Umeda, N., Kono, K. and Kishimoto, N., Nucl. Instrum. & Meth. in Phys. Res. B257 (2006) 20.Google Scholar