Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:25:49.127Z Has data issue: false hasContentIssue false

Nano-engineering with a focused helium ion beam

Published online by Cambridge University Press:  13 September 2011

Diederik J. Maas
Affiliation:
TNO - van Leeuwenhoek Laboratory, Stieltjesweg 1, 2826 CK Delft, The Netherlands
Emile W. van der Drift
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Emile van Veldhoven
Affiliation:
TNO - van Leeuwenhoek Laboratory, Stieltjesweg 1, 2826 CK Delft, The Netherlands
Jeroen Meessen
Affiliation:
ASML Netherlands B.V., de Run 6501, 5500 AH Veldhoven, The Netherlands
Maria Rudneva
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Paul F. A. Alkemade
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Get access

Abstract

Although Helium Ion Microscopy (HIM) was introduced only a few years ago, many new application fields are budding. The connecting factor between these novel applications is the unique interaction of the primary helium ion beam with the sample material at and just below its surface. In particular, the HIM secondary electron (SE) signal stems from an area that is very well localized around the point of incidence of the primary beam. This makes the HIM well-suited for both high-resolution imaging as well as high resolution nanofabrication. Another advantage in nanofabrication is the low ion backscattering fraction, leading to a weak proximity effect. The lack of a quantitative materials analysis mode (like EDX in Scanning Electron Microscopy, SEM) and a relatively low beam current as compared to the SEM and the Gallium Focused Ion Beam are the present drawbacks of the HIM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morgan, J., et al. ., An Introduction to the Helium Ion Microscope . Microscopy Today, 2006. 14(4): p. 24–30.10.1017/S1551929500050240Google Scholar
2. Vladár, A.E., Postek, M.T., and Ming, B., On the Sub-Nanometer Resolution of Scanning Electron and Helium Ion Microscopes . Microscopy Today, 2009. 17: p. 6.10.1017/S1551929500054420Google Scholar
3. Scipioni, L., et al. ., Understanding imaging modes in the helium ion microscope J. Vac. Sci. Technol. B, 2009. 27.Google Scholar
4. Joy, D.C. and Griffin, B.J., Is Microanalysis Possible in the Helium Ion Microscope? Microscopy and Microanalysis, 2011. 17(4): p. 643–649.10.1017/S1431927611000596Google Scholar
5. Livengood, R., et al. ., Subsurface damage from helium ions as a function of dose, beam energy, and dose rate . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2009. 27(6): p. 3244–3249.10.1116/1.3237101Google Scholar
6. Tan, S., et al. ., Gas field ion source and liquid metal ion source charged particle material interaction study for semiconductor nanomachining applications . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010. 28(6): p. C6F15–C6F21.Google Scholar
7. Ramachandra, R., Griffin, B., and Joy, D., A model of secondary electron imaging in the helium ion scanning microscope . Ultramicroscopy, 2009. 109(6): p. 748–757.10.1016/j.ultramic.2009.01.013Google Scholar
8. Petrov, Y. and Vyvenko, O., Secondary electron emission spectra and energy selective imaging in helium ion microscope, in SPIE Scanning Microscopies 2011: Advanced Microscopy Technologies for Defense, Homeland Security, Forensic, Life, Environmental, and Industrial Sciences 2011, SPIE.Google Scholar
9. Seah, M.P. and Dench, W.A., Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids . Surface Interface Analysis, 1979. 1: p. 1.10.1002/sia.740010103Google Scholar
10. Postek, M.T., Vladár, A.E., and Ming, B., Recent progress in understanding the imaging and metrology using the helium ion microscope, in Proc. SPIE, Postek, M.T., et al. ., Editors. 2009, SPIE: Monterey, CA, USA. p. 737808–10.Google Scholar
11. Postek, M.T., et al. ., Review of current progress in nanometrology with the helium ion microscope . Meas. Sci. Technol., 2011. 22(2).10.1088/0957-0233/22/2/024004Google Scholar
12. Alkemade, P.F.A., et al. ., Model for nanopillar growth by focused helium ion-beam-induced deposition . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010. 28(6): p. C6F22–C6F25.10.1116/1.3517536Google Scholar
13. Maas, D.J., et al. ., Nanofabrication with a helium ion microscope . SPIE Metrology, Inspection, and Process Control for Microlithography XXIV 2010. 7638: p. 763814.10.1117/12.862438Google Scholar
15. Hill, R. and Rahman, F.H.M., Advances in helium ion microscopy . Nucl. Instr.. and Meth.A, 2010.Google Scholar
16. van Beek, P.J.G., et al. ., Acoustic immunity improvement for the Helium Ion Microscope - Private communication.Google Scholar
17. Stepanova, M.and Dew, S., eds. Nanofabrication: Techniques and Principles. 1st Edition ed. 2011, Springer: Wien. 4223.Google Scholar
18. Orloff, J., Swanson, L.W., and Utlaut, M., Fundamental limits to imaging resolution for focused ion beams J. Vac. Sci. Technol. B, 1996. 14: p. 5.10.1116/1.588663Google Scholar
19. Castaldo, V., et al. ., On the influence of the sputtering in determining the resolution of a scanning ion microscope . J. Vac. Sci. Technol. B, 2009. 27: p. 3196.10.1116/1.3253549Google Scholar
20. IRC. Available from: http://www.itrs.net/.Google Scholar
21. Postek, M.T., Vladár, A.E., and Ming, B., Breaking the resolution barrier: understanding the science of helium ion beam microscopy., in Frontiers of Characterization and Metrology for Nanoelectronics, Seiler, D.G., et al. ., Editors. 2009, AIP. p. 249–60.Google Scholar
22. Postek, M.T. and Vladár, A.E., Helium ion microscopy and its application to nanotechnology and nanometrology . Scanning, 2008. 30(6): p. 457–462.10.1002/sca.20129Google Scholar
23. Jepson, M., et al. ., Resolution Limits of Secondary Electron Dopant Contrast in Helium Ion and Scanning Electron Microscopy . Microscopy and Microanalysis, 2011. 17(04): p. 637–642.10.1017/S1431927611000365Google Scholar
24. Ohya, K., et al. ., Comparison of secondary electron emission in helium ion microscope with gallium ion and electron microscopes . Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009. 267(4): p. 584–589.10.1016/j.nimb.2008.11.003Google Scholar
25. Yang, J., et al. ., Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection . Nanotechnology, 2011. 22: p. 285310.10.1088/0957-4484/22/28/285310Google Scholar
26. Scipioni, L., et al. ., Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope J. Vac. Sci. Technol. B 2010. 28: p. C6P18.Google Scholar
27. Bell, D.C., et al. ., Precision cutting and patterning of graphene with helium ions . Nanotechnology, 2009. 20.Google Scholar
28. Pickard, D. and Scipioni, L., Graphene Nano-Ribbon Patterning in the Orion Plus ”. Zeiss application note, 2009.Google Scholar
29. Franken, J.H., et al. ., Precise control of domain wall injection and pinning using helium and gallium focused ion beams. Vol. 109. 2011: AIP. 07D504.Google Scholar
30. Orloff, J., Swanson, L., and Utlaut, M., High Resolution Focused Ion Beams: FIB and Its Applications. 2003, New York: Springer Press. 316.10.1007/978-1-4615-0765-9Google Scholar
31. Castaldo, V., High resolution scanning ion microscopy. 2011, Delft University of Technology.Google Scholar
32. Castaldo, V., et al. ., Angular Dependence of the Ion-Induced Secondary Electron Emission for He+ and Ga+ Beams . Microscopy and Microanalysis, 2011. 17(04): p. 624–636.10.1017/S1431927611000225Google Scholar
33. Rudneva, M., et al. ., HIM lamella preparation, in ICM17. 2010: Rio de Janeiro, Brazil.Google Scholar
34. Hor, Y.S., et al. ., Superconductivity in CuxBi2Se3 and its Implications for Pairing in the Undoped Topological Insulator . Physical Review Letters, 2010. 104(5): p. 057001.10.1103/PhysRevLett.104.057001Google Scholar
35. Utke, I., Hoffmann, P., and Melngailis, J., Gas-assisted focused electron beam and ion beam processing and fabrication . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008. 26(4): p. 1197–1276.10.1116/1.2955728Google Scholar
36. Edinger, K., et al. ., Electron-beam-based photomask repair. Vol. 22. 2004: AVS. 2902–2906.Google Scholar
37. Sanford, C., et al. ., Beam induced deposition of platinum using a helium ion microscope . Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2009. 27(6): p. 8.10.1116/1.3237095Google Scholar
38. Scipioni, L., et al. ., A Design-of-Experiments Approach to Characterizing Beam-Induced Deposition in the Helium Ion Microscope . Microscopy Today, 2011. 5: p. 7.Google Scholar
39. Boden, S.A., et al. ., Focused helium ion beam milling and deposition . Microelectronic Engineering, 2011. 88(8): p. 2452.10.1016/j.mee.2010.11.041Google Scholar
40. Chen, P., Three-dimensional Nanostructures Fabricated by Ion-Beam-Induced Deposition, in Kavli Institute for Nanoscience. 2010, Delft University of Technology: Delft.Google Scholar
41. Plank, H., et al. ., The influence of beam defocus on volume growth rates for electron beam induced platinum deposition . Nanotechnology, 2008. 19: p. 485302.10.1088/0957-4484/19/48/485302Google Scholar
42. Ebm, C., et al. ., Modeling of precursor coverage in ion-beam induced etching and verification with experiments using XeF2 on SiO2 . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010. 28(5): p. 946–951.10.1116/1.3481139Google Scholar
43. Chen, P., et al. ., Nanopillar growth by focused helium ion-beam-induced deposition . Nanotechnology, 2010. 21: p. 455302.10.1088/0957-4484/21/45/455302Google Scholar
44. Smith, D.A., Joy, D.C., and Rack, P.D., Monte Carlo simulation of focused helium ion beam induced deposition Nanotechnology, 2010. 21 p. 175302.10.1088/0957-4484/21/17/175302Google Scholar
45. Rizvi, S., ed. Handbook of photomask manufacturing technology. 2005, Taylor & Francis: Boca Raton.Google Scholar
46. Friedli, V., et al. ., Mass sensor for in situ monitoring of focused ion and electron beam induced processes . Applied Physics Letters, 2007. 90(5): p. 053106–053106-3.10.1063/1.2435611Google Scholar
47. Lassiter, M.G., Liang, T., and Rack, P.D., Inhibiting Spontaneous Etching of Nanoscale Electron Beam Induced Etching Features: Solutions for Nanoscale Repair of Extreme Ultraviolet Lithography Masks . Journal of Vacuum Science & Technology B, 2008. 26: p. 3.10.1116/1.2917076Google Scholar
48. Melngailis, J., Focused Ion Beam Lithography (review article) . Nuclear Instrum. Methods in Phys. Res., 1993. B80: p. 1271 10.1016/0168-583X(93)90781-ZGoogle Scholar
49. Yang, J.K.W., et al. ., Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography J. Vac. Sci. Technol. B, 2009. 27: p. 6.10.1116/1.3253652Google Scholar
50. Sidorkin, V., Resist and Exposure Processes for Sub-10-nm Electron and Ion Beam Lithography. 2010, Delft University of Technology.Google Scholar
51. van Langen-Suurling, A., et al. ., Nanolithography with a scanning sub-nanometer helium ion beam . Submitted to J. Vac. Sci. Technol. B.Google Scholar
52. Berger, M.J., et al. ., ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). 2005, National Institute of Standards and Technology: Gaithersburg, MD. http://physics.nist.gov/Star Google Scholar