Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:37:29.322Z Has data issue: false hasContentIssue false

Nanoelectromechanics of Piezoresponse Force Microscopy: Contact Properties, Fields Below the Surface and Polarization Switching

Published online by Cambridge University Press:  01 February 2011

S. V. Kalinin
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Junsoo Shin
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996
M. Kachanov
Affiliation:
Department of Mechanical Engineering, Tufts University, Medford, MA 02155
E. Karapetian
Affiliation:
Department of Mechanical Engineering, Tufts University, Medford, MA 02155
A. P. Baddorf
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

To achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, knowledge of elastic and electrostatic field distributions below the tip is required. The exact closed form solution of the coupled electroelastic problem for piezoelectric indentation is derived and used to obtain the tip-induced electric field and strain distribution in the ferroelectric material. This establishes a complete continuum mechanics description of the PFM imaging mechanism. These solutions are reduced to the point charge/force behavior for large separations from contact, and the applicability limits and charge/force magnitude for these models are established. The implications of these results for ferroelectric polarization switching processes are analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nanoscale Characterization of Ferroelectric Materials, ed. Alexe, M. and Gruverman, A., to be published.Google Scholar
2. Nanoscale Phenomena in Ferroelectric Thin Films, ed. Seungbum Hong, to be published.Google Scholar
3. Lu, X.M., Schlaphof, F., Grafstroem, S., Loppacher, C., Eng, L.M., Suchaneck, G., and Gerlach, G., Appl. Phys. Lett. 81, 3215 (2002).Google Scholar
4. Roelofs, , Schneller, T., Szot, K., and Waser, R., Appl. Phys. Lett. 81, 5231 (2002).Google Scholar
5. Shin, H., Hong, S., Moon, J., and Jeon, J.U., Ultramicroscopy 91, 103 (2002).Google Scholar
6. Tybell, T., Paruch, P., Giamarchi, T., and Triscone, J.-M., Phys. Rev. Lett. 89, 097601 (2002).Google Scholar
7. Terabe, K., Nakamura, M., Takekawa, S. et. al., Appl. Phys. Lett. 82, 433 (2003).Google Scholar
8. Kalinin, S.V., Bonnell, D.A., Alvarez, T. et. al., Nano Letters 2, 589 (2002).Google Scholar
9. Kholkin, A.L., Shvartsman, V.V., Emelyanov, A. Yu. et. al., Appl. Phys. Lett. 82, 2127 (2002).Google Scholar
10. Abplanalp, M., Fousek, J., and Gunter, P., Phys. Rev. Lett. 86, 5799 (2001).Google Scholar
11. Karapetian, E., Kachanov, M., and Sevostianov, I., Arch. Appl. Mech. 72, 564 (2002).Google Scholar
12. Hanson, M., Journal of Tribology, Trans. of ASME 114, 606, (1992).Google Scholar
13. Karapetian, E., Kachanov, M., and Kalinin, S.V., to be published.Google Scholar
14. Landolt-Bornstein New Series Vol.16a, ed. by K.-H. Hellwege and A.M. Hellwege, Springer-Verlag, 1981.Google Scholar
15. Berlincourt, D., in Ultrasonic Transducer Materials, ed. by Mattiat, O.E. (Plenum Press, New York, 1971).Google Scholar
16. Xu, Y., Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, 1991).Google Scholar
17. Landauer, R., J. Appl. Phys. 28, 227 (1957).Google Scholar
18. Abplanalp, M. Dr, Nat. Sci. thesis, Swiss Federal Institute of Technology, Zurich, 2001.Google Scholar
19. Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., and Rosenwaks, Y., Phys. Rev. Lett. 90, 107601 (2003).Google Scholar
20. Kalinin, S.V., Gruverman, A.L., Baddorf, A.P., Shin, J.S., Karapetian, E., and Kachanov, M., to be published.Google Scholar