Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T21:01:44.028Z Has data issue: false hasContentIssue false

Nano-Cylinder Structure Studied by X-ray Diffraction

Published online by Cambridge University Press:  15 March 2011

Gu Xu
Affiliation:
Department of Materials Sci. & Eng., McMaster University, Hamilton, L8S 4L7, Canada
Zhechuan Feng
Affiliation:
Axcel Photonics Inc., 45 Bartlett Street, Marlborough, Massachusetts, 01752
Zoran Popovic
Affiliation:
Xerox Research Center of Canada, Mississauga, Ontario, L5K 2L1, Canada
Jianyi Lin
Affiliation:
Department of Physics, National University of Singapore, 119260, Singapore
Jagadese. J. Vittal
Affiliation:
Department of Chemistry, National University of Singapore, 119260, Singapore
Get access

Abstract

The study of nano-cylinder structure has attracted much attention due to the application of multi-wall carbon nanotubes (MWCNTs). While some TEM observations indicate that they are formed by seamless concentric cylinders, other TEM and high pressure X-ray diffraction studies suggest that they look like scrolls of graphite sheets. Although many people now accept the concentric cylinder model, there has been no confirmation reported. On the other hand, this structural difference of MWCNTs plays a crucial role in determining the properties and suitability for future applications. For example, the periodical boundary condition can only be imposed for cylinders, but not for scrolls. To resolve this issue, we employed high-resolution X-ray diffraction to measure detailed profiles of the Bragg peaks for high-purity MWCNTs. We then identified some unusual observations unique to the nano-cylinder structure, followed by the analysis of the structural difference in the Fourier transform between nanotubes formed by scrolls and concentric cylinders. The simulation results are then compared with the experimental data to reveal the structural details.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).Google Scholar
3. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E. and Smalley, R.E., Science 273, 483 (1996).Google Scholar
4. Ge, M. and Sattler, K., Science 260, 515 (1993).Google Scholar
5. Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S., Appl. Phys. Lett. 60, 2204 (1992).Google Scholar
6. Zhang, Z. and Lieber, C.M., Appl. Phys. Lett. 62, 2792 (1993).Google Scholar
7. Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R. E. and Dekker, C., Nature 391, 59 (1998).Google Scholar
8. Odom, T. W., Huang, J.L., Kim, P. and Lieber, C.M., Nature 391, 62 (1998).Google Scholar
9. Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S. and Achiba, Y., Appl. Phys. Lett. 73, 3839 (1998).Google Scholar
10. Dravid, V.P., Lin, X., Wang, Y., Wang, X.K., Yee, A., Ketterson, J.B. and Chang, R.P.H., Science 259, 1601 (1993).Google Scholar
11. Zhou, O., Fleming, R.M., Murphy, D.W., Chen, C.H., Haddon, R.C., Ramirez, A.P. and Glarum, S.H., Science 263, 1744 (1994).Google Scholar
12. Hamada, N., Sawada, S. and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
13. Dresselhaus, M.S., Dresselhaus, G. and Saito, R., Phys. Rev. B. 45, 6234 (1992).Google Scholar
14. Chen, P., Zhang, H.B., Lin, G.D., Hong, Q. and Tsai, K.R., Carbon 35, 1495 (1997).Google Scholar
15. Chen, P., Wu, X., Lin, J.Y., Li, H. and Tan, K.L., Carbon 38, 139 (2000).Google Scholar
16. Warren, B.E., X-ray diffraction, (Addison-Wesley, New York, 1969).Google Scholar
17. Saito, Y., Yoshikawa, T., Bandow, S., Tomita, M. and Hayashi, T., Phys. Rev. B. 48, 1907 (1993).Google Scholar
18. Bandow, S., J. Appl. Phys. 80, 1020 (1996).Google Scholar
19. Reznik, D., Olk, C.H., Neumann, D.A. and Copley, J.R.D., Phys. Rev. B. 52, 116 (1995).Google Scholar
20. Pasqualini, E., Phys. Rev. B. 56, 7751 (1997).Google Scholar
21. Burian, A., Dore, J.C., Fischer, H.E. and Sloan, J., Phys. Rev. B. 59, 1665 (1999).Google Scholar
22. Xu, G., Feng, Z.C., Popovic, Z., Lin, J. and Vittal, J. J., Advanced Materials 13, 264 (2001).Google Scholar
23. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical properties of carbon nanotubes, (Imperial College Press, London, 1998).Google Scholar