No CrossRef data available.
Article contents
Nanocrystalline-Si Thin Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD) at 150°C
Published online by Cambridge University Press: 01 February 2011
Abstract
Nanocrystalline silicon (nc-Si) films were deposited by inductively coupled plasma chemical vapor deposition (ICP-CVD) at 150°C. ICP power was 400W. The process gas was SiH4 diluted with He as well as H2. The flow rate of He, H2 and He/H2 mixture was varied from 20sccm to 60sccm and that of SiH4 was 3sccm. X-ray diffraction (XRD) patterns of the nc-Si films were measured. From the XRD results of nc-Si films deposited by ICP-CVD, the properties of Si film deposited under each condition were studied. As the dilution ratio increases and He/H2 mixture was used as a dilution gas, intensities of <111>and<220> peaks were increased and the incubation layer was thin. These results were explained in the point of role of H2 plasma and He plasma in the nc-Si deposition process. Our experimental results show that nc-Si film deposited by ICP-CVD may be suitable for an active layer of nc-Si TFTs.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005