Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:08:39.075Z Has data issue: false hasContentIssue false

Nanocrystalline Mg-based hydrides for hydrogen storage

Published online by Cambridge University Press:  21 March 2011

W. Oelerich
Affiliation:
GKSS Research Center Geesthacht GmbH, Inst. for Materials Research Max-Planck-Strasse D-21502 Geesthacht, Germany
T. Klassen
Affiliation:
GKSS Research Center Geesthacht GmbH, Inst. for Materials Research Max-Planck-Strasse D-21502 Geesthacht, Germany
R. Bormann
Affiliation:
GKSS Research Center Geesthacht GmbH, Inst. for Materials Research Max-Planck-Strasse D-21502 Geesthacht, Germany
Get access

Abstract

Hydrogen is the ideal means of energy storage for transportation and conversion of energy in a comprehensive clean-energy concept. However, appropriate storage facilities, both for stationary and for mobile applications, are complicated, because of the very low boiling point of hydrogen (20.4 K at 1 atm) and its low density in the gaseous state (90 g/m3). Furthermore, the storage of hydrogen in liquid or gaseous form imposes safety problems, in particular for mobile applications, e.g. the future zero-emission vehicle. Metal hydrides are a safe alternative for H-storage and, in addition, have a high volumetric energy density that is about 60% higher than that of liquid hydrogen. Mg hydride has a high storage capacity by weight and is therefore favoured for automotive applications. However, so far light metal hydrides have not been considered competitive because of their rather sluggish sorption kinetics. Filling a tank could take several hours. Moreover, the hydrogen desorption temperature of about 300 °C is rather high for most applications. A breakthrough in hydrogen storage technology was achieved by preparing nanocrystalline hydrides using high-energy ball milling. These new materials show very fast aband desorption kinetics within few minutes, thus qualifying lightweight Mg-based hydrides for storage application. In this paper recent detailed results on the sorption behaviour of nanocrystalline Mg and Mg-based alloys are presented. In a following research effort the sorption kinetics of nanocrystalline Mg has been further enhanced by catalyst additions. Furthermore, different transition metals have been added to Mg to achieve a thermodynamic destabilisation of the hydride, thus lowering the desorption temperatures to about 230 °C. The newly developed materials are currently being tested in prototype storage tanks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Belkbir, L., Joly, E., and Gérard, N., Int. J. Hydrogen Energy 6, 285 (1981).Google Scholar
2. Vigeholm, B., Kjoller, J., Larsen, B., and Pedersen, A. S., J. Less-Common Metals 89, 135 (1983).Google Scholar
3. Bogdanovic, B., Hartwig, T. H., and Spliethoff, B., Int. J. Hydrogen Energy 18, 575 (1993).Google Scholar
4. Bogdanovic, B., Bohmhammel, K., Christ, B., Reiser, A., Schlichte, K., Vehlen, R., and Wolf, U., J. Alloys and Compounds 282, 84 (1999).Google Scholar
5. Zaluski, L., Zaluska, A., Tessier, P., Ström-Olsen, J. O., and Schulz, R., Mat. Sci. Forum 225, 853 (1996).Google Scholar
6. Tessier, P., Zaluski, L., Yan, Z. -H., Trudeau, M. L., Bormann, R., Schulz, R., and StrömOlsen, J. O., Mat. Res. Soc. Symp. Proc. 286, 209 (1993).Google Scholar
7. Trudeau, M. L., Schulz, R., Zaluski, L., Hosatte, S., Ryan, D. H., Doner, C. B., Tessier, P., Ström-Olsen, J. O., and Van Neste, A., in Proc. Int. Sym. Mechanical Alloying, 88–90, edited by Shingus, P. H., (Trans Tech Publications, Kyoto, Japan, 1991) pp. 537544.Google Scholar
8. Zaluski, L., Hosatte, S., Tessier, P., Ryan, D. H., Ström-Olsen, J. O., Trudeau, M. L., and Schulz, R., Z. Physikalische Chemie 183, 45 (1994).Google Scholar
9. Zaluski, L., Zaluska, A., Tessier, P., Ström-Olsen, J. O., and Schulz, R., J. Alloys and Compounds 227, 53 (1995).Google Scholar
10. Liang, G., Boily, S., Huot, J., Van Neste, A., and Schulz, R., J. Alloys and Compounds 267, 302 (1998).Google Scholar
11. Liang, G., Boily, S., Huot, J., Van Neste, A., and Schulz, R., J. Alloys and Compounds 268, 302 (1998).Google Scholar
12. Gross, K. J., Spatz, P., Züttel, A., and Schlapbach, L.,. J. Alloys and Compounds 240, 206 (1996).Google Scholar
13. Oelerich, W., PhD thesis, Technical University Hamburg-Harburg, (2000).Google Scholar
14. Reimann, A. L., Phil. Mag. [7] 16, 673 (1933).Google Scholar
15. Schulz, R., Boily, S., and Huot, J., Canadian patent, Ser.-Nr.: 2207149 (1999).Google Scholar
16. Oelerich, W., Klassen, T., and Bormann, R., J. Alloys and Compounds 315, 237 (2001).Google Scholar
17. Oelerich, W., Klassen, T., and Bormann, R., Adv. Eng. Mat., (2001) (in press).Google Scholar
18. Tanguy, B., Soubeyroux, J. -L., Pezat, M., Portier, J., and Hagenmüller, P., Mat. Res. Bull. 11, 1441 (1976).Google Scholar
19. Song, M. Y., Int. J. Hydrogen Energy 20(3), 221 (1995).Google Scholar
20. Liang, G., Huot, J., Boily, S., Van Neste, A., and Schulz, R., J. Alloys and Compounds 297, 261 (2000).Google Scholar
21. DaimlerChrysler, private communication.Google Scholar
22. Zeng, K., Klassen, T., Oelerich, W., and Bormann, R., Int. J. Hydrogen Energy 24(10), 989 (1999).Google Scholar
23. Oelerich, W., Klassen, T., and Bormann, R., J. Alloys and Compounds, (2001) (in press).Google Scholar
24. Henrich, V., Prog. Surf. Sci. 9, 143 (1979).Google Scholar
25. Henrich, V., Rep. Prog. Phys. 48, 1481 (1985).Google Scholar
26. Selvam, P., Viswanathan, C. S., Swamy, C. S., and Srinivasan, V., Int. J. Hydrogen Energy 11(3), 169 (1986).Google Scholar
27. Reilly, J. J. and Wiswall, R. H., Inorg. Chem. 7, 2254 (1968).Google Scholar
28. Zeng, K., Klassen, T., Oelerich, W., Bormann, R., J. Alloys and Compounds 283, 213 (1999).Google Scholar
29. Darnaudary, J. P., Darriet, B., Pezat, M., Int. J. Hydrogen Energy 8, 705 (1983).Google Scholar
30. Klassen, T., Oelerich, W., Zeng, K., Bormann, R., in Magnesium Alloys and their Applications, edited by Mordike, B. L. and Kainer, K. U., (Werkstoff-Informationsgesellschaft mbH, 1998) pp. 307311.Google Scholar