Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:55:41.538Z Has data issue: false hasContentIssue false

Nanocrystalline Ge Synthesis by Picosecond Pulsed Laser Induced Melting and Rapid Soldddtcation

Published online by Cambridge University Press:  15 February 2011

J. Solis
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006-Madrid (SPAIN), Tel: +34–1–5616800, Fax: +34–1–5645557, e-mail: [email protected]
J. Siegel
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006-Madrid (SPAIN), Tel: +34–1–5616800, Fax: +34–1–5645557, e-mail: [email protected]
C. Garcia
Affiliation:
Departamento de Física de la Materia Condensada, Cristalografia y Mineralogía, Universidad de Valladolid, 47011-Valladolid, (SPAIN).
J. Jimenez
Affiliation:
Departamento de Física de la Materia Condensada, Cristalografia y Mineralogía, Universidad de Valladolid, 47011-Valladolid, (SPAIN).
R. Serna
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006-Madrid (SPAIN), Tel: +34–1–5616800, Fax: +34–1–5645557, e-mail: [email protected]
Get access

Abstract

Melting and rapid solidification has been induced in DC-sputtered amorphous Ge (a-Ge) films on glass substrates by irradiation with picosecond laser pulses at 583 nm. The melting-solidification kinetics has been followed by means of real time reflectivity measurements with ns resolution and the structure of the rapidly solidified material has been analyzed by means of Raman spectroscopy in micro-Raman configuration. The results obtained show that for laser pulse fluences above a certain threshold recalescence occurs during solidification leading to the formation of nanocrystalline Ge embedded in an amorphous matrix. The phonon correlation length (L) obtained from the Raman spectra of the irradiated regions has been used to analyze the evolution of the crystallite size with the laser fluence. For low fluences above the recalescence threshold, the values of L are in the 8–10 nm range. However, if the fluence is sufficiently increased, the crystallite size shows a clear linear dependence on the fluence with phonon correlation lengths scaling from 6 to 13 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for instance: Brus, L., Appl. Phys. A 53, 465 (1991),Google Scholar
Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991) orGoogle Scholar
Microcrystalline and Nanocrystalline Semiconductors edited by Brus, L., Hirose, M., Collins, R.W., Koch, F. and Tsai, C.C., (Mater. Res. Soc. Proc. 358, Pittsburgh, PA, 1995).Google Scholar
2.Dutta, A.K., Appl. Phys. Lett. 68, 1189 (1996) and references cited therein.Google Scholar
3.Ovsyuk, N.N., Gorokhov, E.B., Grishchenko, V.V., and Shebanin, A.P., JETP Lett. 47, 298, (1988).Google Scholar
4.Maeda, Y., Tsukamoto, N., Yzawa, Y., Kanemitsu, Y. and Matsumoto, Y., Appl. Phys. Lett. 59, 3168 (1991).Google Scholar
5.Min, K.S., Shcheglov, K.V., Yang, C.M., Atwater, H.A., Brongersma, M.L. and Polman, A., Appl. Phys. Lett. 68, 2511 (1996).Google Scholar
6.Paine, D.C., Caragianis, C., Kim, T.Y., Shigesato, T., Isikawa, T., Appl. Phys. Lett. 62, 2841 (1993).Google Scholar
7.Stiffler, S.R. and Thompson, M.O., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar
8.Sameshima, T. and Usui, S., J. Appl. Phys. 74, 6592 (1993).Google Scholar
9.Siegel, J., Sous, J., Afonso, C.N., Garcia, C., J. Appl. Phys. 80, (15 December 1996).Google Scholar
10.Garcia, C., Prieto, A.C., Jimenez, J., Siegel, J., Sous, J., Afonso, C.N., Chafai, M. in Advanced Laser Processing of Materials: Fundamentals and Applications edited by Singh, R., Norton, D., Laude, L., Narayan, J., Cheung, J. (Mater. Res. Soc. Proc. 397, Pittsburgh, PA, 1996) pp. 435440.Google Scholar
11.de Sande, J.C.G., Afonso, C.N., Escudero, J.L., Serna, R., Vega, F. and Bernabeu, E., Appl. Opt. 31, 6133 (1992).Google Scholar
12.Gonzalez-Hernandez, J., Azarbayejani, G.H., Tsu, R. and Poliak, F.H., Appl. Phys. Lett. 47, 1350 (1985).Google Scholar
13.Fujii, M., Hayashi, S. and Yamamoto, K., Jap. J. Appl. Phys. 30, 687 (1991) and references cited therein.Google Scholar
14.Jimenez, J., Martin, E., Torres, A., Martin, B., Ruil, F. and Sobrón, F., J. Mater. Sci. 4, 217 (1993).Google Scholar
15.Jellison, G.E. Jr., Lowndes, D.H., Mashburn, D.N., and Wood, R.F., Phys. Rev. B 34, 2497 (1986).Google Scholar
16.Stiffler, S.R. and Thompson, M.O., Phys. Rev. B 43, 9851 (1991).Google Scholar