Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T06:54:39.668Z Has data issue: false hasContentIssue false

Nanocrystal Formation Via Yttrium Ion Implantation into Sapphire

Published online by Cambridge University Press:  21 February 2011

E. M. Hunt
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, 778 Atlantic Dr. Atlanta Georgia, 30332–0245
J. M. Hampikian
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, 778 Atlantic Dr. Atlanta Georgia, 30332–0245
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Ion implantation has been used to form nanocrystals in the near surface of single crystal A12O3. The ion fluence was 5 x 1016 Y+/cm2, and the implant energies investigated were 100, 150, and 170 keV. The morphology of the implanted region was investigated using transmission electron microscopy, x-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy and ion channeling. The implantation causes the formation of an amorphous surface layer which contains spherical nanosized crystals with a diameter of ∼13 nm. The nanocrystals are randomly oriented and exhibit a face-centered cubic structure with a lattice pmeter of ∼4.1 A ± .02 A. Preliminary chemical analysis shows that these nanocrystals are rich in aluminum and yttrium and poor in oxygen relative to the amorphous matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Buchai, Ch., Withrow, S. P., White, C. W., Poker, D. B., Annu. Rev. Mater. Sci., 24, 125157, 1994.Google Scholar
2 Haglund, R. F. Jr., Yang, L., Macgruder III, R. H., Wittig, J. E., Becker, K., Zuhr, R. A., Optics Lett., 18, (5), 373375, 1993.Google Scholar
3 Wang, Z. L., Cowley, J. M., Ultramicroscopy, 21, 7794, 1987.Google Scholar
4 Mouritz, A. P., Sood, D. K., St John, D. H., Swain, M. V., Williams, J. S., Nuc. Inst. & Meth. B, B19/20, 805808, 1987.Google Scholar
5 Allegre, J., Arnaud, G., Mathieu, H., Lefebvre, P., Granier, W., Bondes, L., J. Cryst. Growth., 138, 9981003,1994.Google Scholar
6 Allais, M., Gandais, M, Mat. Sci. Eng., B9, 429432, 1991.Google Scholar
7 Doremus, R. H., J. Chem. Phys., 40 (8), 23892396, 1986.Google Scholar
8 Townsend, P. D., Rep. Prog. Phys., 50, 501558, 1987.Google Scholar
9 Sklad, P. S., McHargue, C. J., White, C. W., Farlow, G. C., J. Mat. Sci., 27 (21), 58955904, 1992.Google Scholar
10 Ohkubo, M., Suzuki, N., Phil. Mag. Lett., 57 (5), 261265, 1988.Google Scholar
11 Farlow, G.C., Sklad, P.S., White, C. W., McHargue, C. J., J. Mater. Res. 5 (7), 15021519, 1990.Google Scholar
12 Ohkubo, M., Hioki, T., Kawamoto, J., J. Appl. Phys., 60 (4), 13251335, 1986.Google Scholar
13 Burnett, P. J., Page, T. F., Rad. Eff., 97, 283296, 1986.Google Scholar