Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T03:34:59.206Z Has data issue: false hasContentIssue false

Nanocones- a different form of carbon with unique properties

Published online by Cambridge University Press:  26 February 2011

Henning Heiberg-Andersen
Affiliation:
[email protected], Institute for Energy Technology, Physics Department, Instituttveien 18, Kjeller, Norway, N-20227, Norway, +47 63 80 60 81
Geir Helgesen
Affiliation:
[email protected], Institute for Energy Technology, Physics Department, Norway
Kenneth Knudsen
Affiliation:
[email protected], Institute for Energy Technology, Physics Department, Norway
Jean Patrick Pinheiro
Affiliation:
[email protected], Institute for Energy Technology, Physics Department, Norway
Eldrid Svåsand
Affiliation:
[email protected], Institute for Energy Technology, Physics Department, Norway
Arne Skjeltorp
Affiliation:
[email protected], Institute for Energy Technology, Physics Department, Norway
Get access

Abstract

It is possible to make perfect conical carbon nanostructures fundamentally different from the other nanocarbon materials, notably buckyballs and nanotubes. Carbon cones are realized in five distinctly different forms. They consist of curved graphite sheets formed as open cones with one to five carbon pentagons at the tip with successively smaller cone angles, respectively. The nucleation and physics of nanocones has been relatively little explored until now. We present here the key facts and latest results on this “5’th form of carbon”.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Häuckel, E., Z. Phys. 70, 204 (1931).Google Scholar
2 Haddon, R.C. and Raghavachari, K., in Buckministerfullerenes, eds. Billups, W.E. and Ciufolini, M.A. (VCH Press, New York, 1993)Google Scholar
3 Nieminen, R.M., Puska, M.J. and Manninen, M.J., Many-Atom Interactions in Solids (1989), Springer, Berlin Google Scholar
4 Majewski, J.A. and Vogl, P., The Structure of Binary Compounds (1989), North-Holland, Amsterdam Google Scholar
5 Mintmire, J.W., Dunlap, B.I. and White, C.T., Phys. Rev. Lett. 68, 631 (1992).Google Scholar
6 Akagi, K., Tamura, R., Tsukada, M., Itoh, S. and Ihara, S., Phys. Rev. Lett. 74, 2307 (1995).Google Scholar
7 Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C., Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1995)Google Scholar
8 Ge, M. and Sattler, K., Chem. Phys. Lett. 220, 192 (1994).Google Scholar
9 Balaban, A.T., Klein, D.J. and Liu, X., Carbon 32, 357 (1994).Google Scholar
10 Terrones, H., J. Math. Chem. 15, 143 (1994).Google Scholar
11 Ganser, B.K., Li, S., Klishko, V.Y., Finch, J.T. and Sundquist, W.I., Science 283, 80 (1999).Google Scholar
12 Li, S., Hill, C.P., Sundquist, W.I. and Finch, J.T., Nature 407, 409 (2000).Google Scholar
13 Kværner's patent no PCT/NO98/00093 for production of micro domain particles by use of a plasma process.Google Scholar
14 Krishnan, A., Dujardin, E., Treacy, M.M.J., Hugdahl, J., Lynum, S. and Ebbesen, T.W., Nature 388, 451 (1997).Google Scholar
15 Heiberg-Andersen, H., in Handbook of Theoretical and Computational Nanotechnology, eds. Rieth, M. and Schommers, W. (American Scientic Publishers, 2005)Google Scholar
16 Jaszczak, J.A., Robinson, G.W., Dimovski, S. and Gogotsi, Yury, Carbon 41, 2085 (2003).Google Scholar
17 Taylor, R., Tetrahedron Lett. 32, 3731 (1991).Google Scholar
18 Taylor, R. and Walton, R.M., Nature 363, 685 (1993).Google Scholar
19 Manolopoulus, D. E., Woodall, D. R. and Fowler, P. W., J. Chem. Soc. Faraday Trans. 88, 2427 (1992)Google Scholar
20 Heiberg-Andersen, H. and Skjeltorp, A.T., J. Math. Chem. 38 589 (2005)Google Scholar
21 Heiberg-Andersen, H. and Sattler, K., “Topological localization of valence orbitals in carbon nanocones”, To be published.Google Scholar
22 Heiberg-Andersen, H. and Skjeltorp, A.T., “Spectra of conic carbon radicals”, Submitted for publication.Google Scholar
23 ADF 2004.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (http://www.scm.com)Google Scholar
24 Velde, G. te, Bickelhaupt, F.M., van Gisbergen, S.J.A., Guerra, C. Fonseca, Baerends, E.J., Snijders, J.G. and Ziegler, T., J.Comput. Chem. 22, 931 (2001).Google Scholar
25 Guerra, C. Fonseca, Snijders, J.G., Velde, G. te and Baerends, E.J., Theor. Chem. Acc. 99, 391 (1998).Google Scholar
26 Becke, A.D., Phys. Rev. A 38, 3098 (1988).Google Scholar
27 Lee, C., Yang, W. and Parr, R.G., Phys. Rev. B 37, 785 (1988).Google Scholar
28 Johnson, B.G., Gill, P.M.W. and Pople, J.A., J.Chem. Phys. 98, 5612 (1993).Google Scholar