Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:38:49.590Z Has data issue: false hasContentIssue false

Nanocomposite Route to Ultra-sensitive Surface Enhanced Raman Scattering Substrates

Published online by Cambridge University Press:  01 February 2011

Abhijit Biswas
Affiliation:
[email protected], University of Notre Dame, Electrical Engineering, Center for Nanoscience and Technology, Notre Dame, Indiana, United States
Ilker Bayer
Affiliation:
[email protected], University of Illinois at Urbana-Champaign, Aerospace Engineering, Urbana, Illinois, United States
Alexandru S. Biris
Affiliation:
[email protected], University of Arkansas at Little Rock, Applied Science, Nanotechnology Center, Little Rock, Arkansas, United States
Get access

Abstract

We show a novel route to prepare SERS substrates, which is based on polymer–metal nanocomposites with a specific structure and composition just below the percolation threshold. The neighboring nanoparticles are still quite densely packed, but remain separated by narrow polymer gaps (<1 nm). Such a nanostructure allows the creation of densely packed hot spots where electromagnetic energy can be confined. The polymer–metal nanocomposites are fabricated by a simple and single-step method of electron-beam-assisted vapor-phase co-deposition. The preparation of the SERS substrates is based on a simple plasma-etching process, which removes the polymer structures that allow the formation of metal nanoparticle SERS nano-aggregates with very uniform and controllable inter-particle gaps. The method results in “ideal SERS hot spots” throughout the matrix. These hot spots can be created over very large areas. The prepared SERS substrates are promising candidates for the direct detection (label-free) and analysis of various biological and chemical samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hering, K. Cialla, D. Ackermann, K. Dörfer, T.,Möller, R., Schneidewind, H. Mattheis, R. Fritzsche, W., Rösch, P., Popp, J. Anal Bioanal Chem. 390, 113 (2008).Google Scholar
2 Freeman, R. G. Grabar, K. C. Allison, K. J. Robin, M. B. Davis, J. A. Guthrie, A. P. Hommer, M. B., Jackson, M. A. Smith, P. C. Walter, D. G. Natan, M. J. Science 267, 1629 (1995).Google Scholar
3 Nie, Shuming and Emory, Steven R. Science 275, 1102 (1997).Google Scholar
4 Doering, W. E. Piotti, M. E. Natan, M. J. Freeman, R. G. Adv. Mater. 19, 3100 (2007).Google Scholar
5 Jesus, M. A. De, Giesfeldt, K. S. Oran, J. M. Abu-Hatab, N. A., Lavrik, N. V. Sepaniak, M. J. Appl. Spectrosc. 59, 1501 (2005).Google Scholar
6 Biswas, A. et al. Nanotechnology 20, 325705 (2009).Google Scholar
7 Biswas, A. Eilers, H. Hidden, F. Aktas, O. C. and Kiran, C. V. S. Appl. Phys. Lett. 88, 013103 (2006).Google Scholar
8 Maier, S. A. Optics Express, 14, 1957 (2006).Google Scholar
9 Schatz, George C. Matthew Young, A. and Duyne, Richard P. Van, Electromagnetic Mechanism of SERS, Kneipp, K. Moskovits, M. Kneipp, H. (Eds.): Surface-Enhanced Raman Scattering – Physics and Applications, Topics Appl. Phys. (Springer-Verlag, 2006) 19, pp. 103.Google Scholar
10 Shalaev, V. M. Optical Properties of Nanostructured Random Media, Top. Appl. Phys. Shalaev, V. M. (Ed.), (Springer, 2002), 82, pp. 93114.Google Scholar