Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:24:00.194Z Has data issue: false hasContentIssue false

A Nanocomposite Gel Electrolyte Made by the Sol-Gel Route for a Solid-State Dye-Sensitized Photoelectrochemical and Electrochromic Cells

Published online by Cambridge University Press:  01 February 2011

Boris Orel
Affiliation:
National Institute of Chemistry, Hajdrihova 19, SI - 1000 Ljubljana, Slovenia
Urska Lavreněiě Štangar
Affiliation:
National Institute of Chemistry, Hajdrihova 19, SI - 1000 Ljubljana, Slovenia
Angela Šurca Vuk
Affiliation:
National Institute of Chemistry, Hajdrihova 19, SI - 1000 Ljubljana, Slovenia
Panagiotis Lianos
Affiliation:
Engineering Science Department, University of Patras, 26500 Patras, Greece
Philippe Colomban
Affiliation:
LADIR UMR 7075 CNRS & Paris VI University, 2 Rue Henry Dunant, 94320 Thiais, France
Get access

Abstract

This work describes the properties of an organic-inorganic hybrid gel with an incorporated I-/I3-redox couple that serves as a solid electrolyte for a dye-sensitized TiO2 photoelectrochemical (DSPEC) cell with an efficiency of 4% [1]. The influence of the AcOH on the hydrolysis and condensation reactions of the gels was studied with the help of infrared spectroscopy, while the presence and the formation of the I3 - species were established from the UV-visible spectra of the gels and independently evaluated from the confocal micro-resonance Raman spectra of the electrolyte encapsulated in the DSPEC during open- and short-circuit conditions. Finally, the same gel electrolyte was used for the construction of an electrochromic (EC) window without a counter electrode with intercalation properties (transmission and reflective configuration).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stathatos, E. Lianos, P. Štangar, U. Lavreněiě and Orel, B. Adv. Mater. 14, 354 (2002).Google Scholar
2. Nazeerudin, M. K. Kay, A. Rodicio, I. Humphry-Baker, R., Mueller, E. Liska, P. Vlachopoulos, N. and Grätzel, M., J. Am. Chem. Soc. 115, 6382 (1993).Google Scholar
3. Bach, V. Lupo, D. Compte, P. Moser, J. E. Weissoertel, F. Salbeck, J. Spreitzer, H. and Grätzel, M., Nature 395, 583 (1998).Google Scholar
4. O'Reagan, B., Swartz, D. T. Zakerruddin, S. M. Grätzel, M., Adv. Mater. 12, 1263 (2000).Google Scholar
5. Tennakone, K. Sanadeera, G. K. R. Perera, V. P. S. Kottegoda, I. R. M. and Silva, L. A. A. De, Chem. Mater. 11, 2474 (1999).Google Scholar
6. Judeinstein, P. and Sanchez, C. J. Mater. Chem. 6, 511 (1996).Google Scholar
7. Stathatos, E. Lianos, P. and Krontiras, C. J. Phys. Chem. 105, 3486 (2001).Google Scholar
8. Štangar, U. Lavreněiě, Grošelj, N., Orel, B. and Colomban, Ph., Chem. Mater. 12, 3745 (2000).Google Scholar
9. Kebede, Z. Linquist, S-E., Sol. Energy Mater. & Sol. Cells 57, 259 (1999).Google Scholar
10. Pope, E. I. A. and Mackenzie, J. D. J. Non-Cryst. Solids 87, 185 (1986).Google Scholar
11. Klaboe, P. J. Am. Chem. Soc. 89, 3667 (1967).Google Scholar
12. Štangar, U. Lavreněiě, Orel, B. Colomban, Ph., Stathatos, E. Lianos, P. J. New Mater. Electrochem. Syst. (in press).Google Scholar
13. Rauh, R. D. Electrochim. Acta 44, 3165 (1999).Google Scholar
14. Krašovec, U. Opara, Vuk, A. Šurca, Orel, B. accepted in Sol. Energy Mater. & Sol. Cells. Google Scholar