Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:02:23.299Z Has data issue: false hasContentIssue false

Nanoassembled Model Catalysts: Changing Efficiency and Selectivity Atom-by-Atom

Published online by Cambridge University Press:  17 March 2011

U. Heiz
Affiliation:
University of Ulm, Institute of Surface Chemistry and Catalysis, D-89069 Ulm, Germany
S. Abbet
Affiliation:
University of Ulm, Institute of Surface Chemistry and Catalysis, D-89069 Ulm, Germany
H. Häkkinen
Affiliation:
Georgia Institute of Technology, School of Physics, Atlanta, Georgia 30332-0430
U. Landman
Affiliation:
Georgia Institute of Technology, School of Physics, Atlanta, Georgia 30332-0430
Get access

Abstract

Cluster-assembled materials open fascinating new routes for tuning physical and chemical properties by changing cluster size and often these materials behave completely differently than their bulk analogues. By depositing gas phase cluster cations on various surfaces, cluster model catalysts are fabricated, which exhibit remarkable catalytic activity. While inert as bulk material, gold cluster catalysts oxidize carbon monoxide with Au8 to be the smallest active size. In contrast to the high selectivity of Pd(111) surfaces for the cyclotrimerization of acetylene, small supported Pdn clusters reveal a strongly size-dependent selectivity for the polymerization of acetylene and catalyze the cyclotrimerization as well as the hydrogenation of the formed intermediate C4H4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bond, G. C., and Thompson, D. T., Catal. Rev.-Sci. Eng. 41, 319 (1999).Google Scholar
2. Kaldor, A., Cox, D., and Zakin, M.R., Adv. Chem. Phys. 70, 211 (1988).Google Scholar
3. Cox, D.M., Brickman, R.O., Creegan, K., and Kaldor, A., Mater. Res. Soc. Symp. Proc 206, 43 (1991).Google Scholar
4. Lian, L., Hackett, P.A., and Rayner, D.M., J. Chem. Phys. 99, 2583 (1993).Google Scholar
5. Holmgren, L., Andersson, M., and Rosen, A., Chem. Phys. Lett. 296, 167 (1998).Google Scholar
6. Morse, M.D., Geusic, M.E., Heath, J.R., and Smalley, R.E., J. Chem. Phys. 83, 2293 (1985).Google Scholar
7. Shi, Y., and Ervin, K.M., J. Chem. Phys. 108, 1757 (1998).Google Scholar
8. Sanchez, A., Abbet, S., Heiz, U., Schneider, W.-D., Häkkinen, H., Barnett, R.N., and Landman, U., J. Phys. Chem. A 103, 9573 (1999).Google Scholar
9. Abbet, S., Sanchez, A., Heiz, U., and Schneider, W.-D. J. of Cat. 198, 122 (2001).Google Scholar
10. Heiz, U., Vanolli, F., Trento, L., and Schneider, W.-D., Rev. Sci. Instrum. 68, 1986 (1997).Google Scholar
11. Wu, M.C., Corneille, J.S., Estrada, C.A., He, J.-W., and Goodman, D.W., Chem. Phys. Lett. 182(5), 472 (1991).Google Scholar
12. Heiz, U., and Schneider, W.-D., J. Phys. D, 33, R85 (2000).Google Scholar
13. Schaffner, M.-H., Patthey, F., Schneider, W.-D., and Pettersson, L.G.M., Surf. Sci 450, 402 (1998).Google Scholar
14. Heiz, U., Vanolli, F., Sanchez, A., and Schneider, W.-D., J. Am. Chem. Soc. 120, 9668 (1998).Google Scholar
15. Heiz, U., Sanchez, A., Abbet, S., and Schneider, W.-D., J. Am. Chem. Soc. 121, 3214 (1999).Google Scholar
16. Neyman, K.M., Roesch, N., and Pacchioni, G., Applied Catalysis A: General 191, 3 (2000).Google Scholar
17. Heiz, U., Appl. Phys. A 67, 621 (1998).Google Scholar
18. Messerli, S., Schintke, S., Morgenstern, K., Sanchez, A., Heiz, U., and Schneider, W.-D., Surface Science 465, 331 (2000).Google Scholar
19. Hammer, B., and Norskov, J.K., Nature 376, 238 (1995).Google Scholar
20. Haruta, M., Catalysis Today 36, 153 (1997).Google Scholar
21. Iizuka, Y., Fujiki, H., Yamauchi, N., Chijiiwa, T., Arai, S., Tsubota, S., and Haruta, M., Catalysis Today 36, 115 (1997).Google Scholar
22. Valden, M., Lai, X., and Goodman, D.W., Science 281, 1647 (1998).Google Scholar
23. Haekkinen, H., and Landman, U., Phys. Rev. B, (to be published).Google Scholar
24. Ormerod, R.M., and Lambert, R.M., J. Chem. Soc., Chem. Commun., 1421 (1990).Google Scholar
25. Holmblad, P.M., Rainer, D.R., and Goodman, D.W., J. Phys. Chem. B 101, 8883 (1997).Google Scholar
26. Patterson, C.H., and Lambert, R.M., J. Phys. Chem. 92, 1266 (1988).Google Scholar
27. Abbet, S., Sanchez, A., Heiz, U., Schneider, W.-D., Ferrari, A.M., Pacchioni, G., and Rösch, N., J. Am. Chem. Soc. 122, 3453 (2000).Google Scholar
28. Vattuone, L., Yeo, Y.Y., Kose, R., and King, D.A., Surface Science 447, 1 (2000).Google Scholar
29. Pacchioni, G., and Lambert, R.M., Surface Science 304, 208 (1994).Google Scholar
30. Fahmi, A., and Santen, R.A. van, J. Phys. Chem. 100, 5676 (1996).Google Scholar
31. Timbrell, P.Y., Gellman, A.J., Lambert, R.M., and Willis, R.F., Surface Science 206, 339 (1988).Google Scholar
32. Burkart, S., Blessing, N., and Ganteför, G., Phys. Rev. B 60, 15639 (1999).Google Scholar