Article contents
Namomechanical Imaging and Nanoscale Elastic Modulus Measurements of SnO2 Nanobelts
Published online by Cambridge University Press: 15 March 2011
Abstract
The relative surface contact stiffness of SnO2 nanobelts has been investigated via ultrasonic force microscopy (UFM). The nanobelt crystal structure, as determined via transmission electron microscopy, was indexed to the tetragonal rutile structure (with lattice constants identical to those of bulk SnO2) as reported previously. The atomic Sn:O composition of the nanobelts studied was at or near 1:2. Topographic imaging studies revealed the nanobelt surface to be atomically flat with the exception of surface nanodots, assumed to be local SnO2 crystallites. Preliminary reduced modulus measurements were carried out via differential UFM on both the flat and nanodot regions of the nanobelt. Using the underlying Si substrate as a calibration standard the SnO2 modulus was estimated at 157±12 GPa, significantly lower than corresponding bulk values for any of the observed crystal orientations. We speculate this discrepancy is due in part to a combination of the aspherical probe tip and unknown adhesive properties of nanobelt. An intrinsic reduction of the SnO2 nanobelt modulus cannot be ruled out.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
- 3
- Cited by