Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T05:36:38.179Z Has data issue: false hasContentIssue false

NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction

Published online by Cambridge University Press:  01 February 2011

Daphiny Pottmaier
Affiliation:
Sebastiano Garroni
Affiliation:
[email protected], UAB, Fisica, Barcelona, Spain
Michela Brunelli
Affiliation:
[email protected], ILL, D20, Grenoble, France
Gavin B. M. Vaughan
Affiliation:
[email protected], ESRF, ID11, Grenoble, France
Alberto Castellero
Affiliation:
[email protected], UNITO, Chimica IFM NIS, Turin, Italy
Enric Menéndez
Affiliation:
[email protected], UAB, Fisica, Barcelona, Spain
Maria Dolors Baró
Affiliation:
[email protected], UAB, Fisica, Barcelona, Spain
Marcello Baricco
Affiliation:
[email protected], UNITO, Chimica IFM NIS, Turin, Italy
Get access

Abstract

Light element complex hydrides (e.g. NaBH4) together with metal hydrides (e.g. MgH2) are considered two primary classes of solid state hydrogen storage materials. In spite of drawbacks such as unfavourable thermodynamics and poor kinetics, enhancements may occur in reactive hydride composites by nanostructuring of reactant phases and formation of more stable product phases (e.g. MgB2) which lower overall reaction enthalpy and allow reversibility. One potential system is based on mixing NaBH4 and MgH2 and subsequent ball milling, which in a 2:1 molar ratio can store considerable amounts of hydrogen by weight (up to 7.8 wt%). A study of the 2NaBX4 + MgX2 → MgB2 + 2NaX + 4X2 (X=D,H) reaction is assessed by means of in-situ neutron diffraction with different combinations of hydrogen and deuterium on the X position. The desorption is established to begin at temperatures as low as 250 °C, starting with decomposition of nanostructured MgX2 due to joint effects of nanostructured MgX2 and its reducing effect at NaBX4. Analyses of background profile, due to the high incoherent neutron scattering of hydrogen, as a function of temperature demonstrate direct correlation of H/D desorption reactions with relative phases amount.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zuettel, A. Borgschulte, A. Schlapbach, L. Hydrogen as Future Energy Carrier, (Wiley-VCH, Weinheim, 2008) pp. 91.Google Scholar
2 Barkhordarian, G. Klassen, T. Bormann, R. International Patent No. WO2006/063627.Google Scholar
3 Vajo, J.J. Mertens, F. Ahn, C. C. Bowman, R. C. Jr. , Fultz, B. J. Phys. Chem. B 108, 1397713983 (2004).Google Scholar
4 Barkhordarian, G. Klassen, T. Dornheim, M. Bormann, R. J. Alloys Compd. 440, L18–L21 (2007).Google Scholar
5 Hwang, S.-J. Bowman, R.C. Jr. , Reiter, J.W. Rijssenbeek, J. Soloveichik, G.L. Zhao, J.-C. Kabbour, H., Ahn, C.C. J. Phys. Chem. C 112, 31643169 (2008).Google Scholar
6 Urgnani, J. Torres, F.J. Palumbo, M. Baricco, M. Int. J. Hydrogen Energy 33, 3111–15 (2008).Google Scholar
7 Pottmaier, D. Groppo, E. Bordiga, S. Spoto, G. Baricco, M. Dehydrogenation pathway of 2NaBH4+MgH2 composite, (HYSYDAYS 2009 Proc., Turin, Italy, 2009).Google Scholar
8 Garroni, S. Pistidda, C. Brunelli, M. Vaughan, G.B.M. Suriñach, S., Baró, M.D., Scripta Mater. 60, 11291134 (2009).Google Scholar
9 Lutterotti, L. Matthies, S. Wenk, H.-R. Schulz, A. J. Richardon, J. J. of Apply. Phys. 81, 594600 (1997). MAUD is available at http://www.ing.unitn.it/̃maud/Google Scholar
10 Varin, R.A. CChiu, h. J. Alloys Compd. 397, 276281 (2005).Google Scholar
11 Huot, J. Liang, G. Boily, S. Neste, A. Van, Schulz, R. J. Alloys Compd. 293–295, 495500 (1999).Google Scholar
12 Pottmaier, D. Baricco, M. presented at the 7th COSY Project Meeting, Grenoble, France, 2009 (unpublished).Google Scholar