Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:28:26.939Z Has data issue: false hasContentIssue false

Multiscale Modeling of Stress-Mediated Diffusion in Silicon - Volume Tensors

Published online by Cambridge University Press:  21 March 2011

W. Windl
Affiliation:
Digital DNA Laboratories, Motorola, Inc., Austin, TX
M. S. Daw
Affiliation:
Dept. of Physics & Astronomy, Clemson University, Clemson, SC
N. N. Carlson
Affiliation:
Computational Materials Group, Motorola, Inc., Los Alamos, NM
M. Laudon
Affiliation:
Axiowave Networks, Inc., Marlborough, MA
Get access

Abstract

In a previous paper, we presented a general theoretical treatment of the effect of stress on defect diffusion in Si (M. S. Daw, W. Windl, N. N. Carlson, M. Laudon, and M. P. Masquelier, to be published in Phys. Rev. B). In this paper, we discuss the calculation of the parameters governing the stress dependence of the diffusivity, which are volume quantities, and present the fully anisotropic volume tensor for vacancy formation in Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Maiti, B., Tobin, P., Hobbs, C., Hegde, R., Huang, F., O'Meara, D., Jovanovic, D., Mendicino, M., Chen, J., Connelly, D., Adetutu, O., Mogab, J., Candelaria, J. and La, L., International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217) p. 781, 1998.Google Scholar
2 Scott, G., Lutze, J., Rubin, M., Nouri, F., and Manley, M., International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318) p. 827, 1999.Google Scholar
3 Aziz, M., Defect and Diffusion Forum 153–155, 1 (1998).Google Scholar
4 Zhao, Y., Aziz, M., Mitha, S. and Schiferl, D., Appl. Phys. Lett. 74, 3133 (1999).Google Scholar
5 Zhao, Y., Aziz, M., Gossmann, H.-J., Mitha, S., and Schiferl, D., Appl. Phys. Lett. 75, 941 (1999).Google Scholar
6 Zhao, Y., Aziz, M., Gossmann, H.-J., and Mitha, S., Appl. Phys. Lett. 74, 31 (1999).Google Scholar
7 Park, H., Jones, K. S., Slinkman, J. A., and Law, M. E., J. Appl. Phys. 78, 3664 (1995).Google Scholar
8 Chaudhry, S. and Law, M. E., J. Appl. Phys. 82, 1138 (1997).Google Scholar
9 Osada, K., Zaitsu, Y., Matsumoto, S., Yoshida, M., Arai, E., and Abe, T., J. Electrochem. Soc. 142, 202 (1995).Google Scholar
10 Todokoro, Y., J. Appl. Phys. 49, 3527 (1978).Google Scholar
11 Antonelli, A. and Bernholc, J., Phys. Rev. B 40, 10643 (1989).Google Scholar
12 Antonelli, A., Kaxiras, E., and Chadi, D. J., Phys. Rev. Lett. 81, 2088 (1998).Google Scholar
13 Sadigh, B., Lenosky, T. J., Theiss, S. K., Caturla, M.-J., Rubia, T. Diaz de la, and Foad, M. A., Phys. Rev. Lett. 83, 4341 (1999).Google Scholar
14 Tang, M., Colombo, L., Zhu, J., and Rubia, T. D. de la, Phys. Rev. B 55, 14 279 (1997).Google Scholar
15 Bogy, D. B., Transactions of the ASME, pp. 460466, Sept. 1968.Google Scholar
16 Chung, C. and Eischen, J.W., Int. J. Solids Structures 28, 105 (1991).Google Scholar
17 Daw, M. S., Windl, W., Carlson, N. N., Laudon, M., and Masquelier, M. P. (to be published).Google Scholar
18 Laudon, M., Carlson, N. N., Masquelier, M. P., Daw, M. S., and Windl, W., Appl. Phys. Lett. 78, 201 (2001).Google Scholar
19 Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); 49, 14 251 (1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 55, 11 169 (1996).Google Scholar
20 Lenosky, T. J., Sadigh, B., Quong, A. A., and Rubia, T. D. de la (unpublished).Google Scholar
21 Windl, W., Laudon, M., Daw, M. S., Carlson, N. N., and Masquelier, M. P., in Proceedings of the Second International Conference on Modeling and Simulation of Microsystems, March 27-29, 2000, San Diego, CA (Computational Publications, Cambridge, MA 2000), p. 15.Google Scholar