Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:14:06.430Z Has data issue: false hasContentIssue false

Multiscale Modeling of Helium-Vacancy Cluster Nucleation under Irradiation: A Kinetic Monte-Carlo Approach

Published online by Cambridge University Press:  31 January 2011

Tomoaki Suzudo
Affiliation:
[email protected], Japan Atomic Energy Agency, Center for Computational Science & e-Systems, Tokai-mura, Japan
Masatake Yamaguchi
Affiliation:
[email protected], Japan Atomic Energy Agency, Center for Computational Science & e-Systems, Tokai-mura, Japan
Hideo Kaburaki
Affiliation:
[email protected], Japan Atomic Energy Agency, Center for Computational Science & e-Systems, Tokai-mura, Japan
Ken-ichi Ebihara
Affiliation:
[email protected], Japan Atomic Energy Agency, Center for Computational Science & e-Systems, Tokai-mura, Japan
Get access

Abstract

We applied ab initio calculation and an object kinetic Monte Carlo modeling to the study of He-vacancy cluster nucleation under irradiation in bcc and fcc Fe, which are surrogate materials for ferritic/martensitic and austenitic steels, respectively. The ab initio calculations provided parameters for the object kinetic Monte Carlo model, such as the migration energies of point defects and the dissociation energies of He and vacancy to He-vacancy clusters. We specially focused on the simulation of high He/dpa irradiation such as He-implantation into the materials and tracked the nucleation of clusters and the fate of point defects such as SIAs, vacancies, and He atoms. We found no major difference of He-vacancy cluster nucleation between bcc and fcc Fe when we ignore the intracascade clustering even if the migration energies of point defects are significantly different between the two crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Trinkaus, H. Singh, B.N. J. Nucl. Mater. 323, 229(2003).Google Scholar
2. Garner, F.A. Materials Science and Technology, Vol. 10A, Chapter 6, VCH, Germany(1994).Google Scholar
3. Garner, F.A. Toloczko, M.B. Sencer, B.H. J. Nucl. Mater. 276, 123(2000).Google Scholar
4. Zinkle, S.J. Phys. Plasmas 12, 0581101(2005).Google Scholar
5. Caturla, M.J. Rubia, T. Diaz de la, Fluss, M. J. Nucl. Mater. 323, 163(2003).Google Scholar
6. Kresse, G. Furthmüllar, J., Phys. Rev. B 47, R558(1993).Google Scholar
7. Kresse, G. Joubert, D. Phys. Rev. B 59, 1758(1999).Google Scholar
8. Fu, C.-C. Willaime, F. Phys. Rev. B 72, 064117(2005).Google Scholar
9. Caturla, M.J. Soneda, N. Alonso, E. Wirth, B.D. Rubia, T. Diaz de la, Perlado, J.M. J. Nucl. Mater. 276, 13(2000).Google Scholar
10. Domain, C. Becquart, C.S. Malerba, L. J. Nucl. Mater. 335, 121(2004).Google Scholar
11. Voter, A.F. Radiation Effects in Solids 235, 1(2007).Google Scholar
12. Deo, C.S. et al. , J. Nucl. Mater. 361 141(2007).Google Scholar
13. Rotller, J. Srollovitz, D.J. Car, R. Phys. Rev. B 71, 064109(2005).Google Scholar
14. Hasegawa, A. Nogami, S. Sato, Y. private communication.Google Scholar