Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T02:04:24.361Z Has data issue: false hasContentIssue false

Multiscale Approach to Theoretical Simulations of Materials for Nuclear Energy Applications: Fe-Cr and Zr-based Alloys

Published online by Cambridge University Press:  23 January 2013

Igor A. Abrikosov
Affiliation:
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
Alena V. Ponomareva
Affiliation:
Theoretical Physics and Quantum Technology Department, National University of Science and Technology “MISIS”, RU-119049 Moscow, Russia.
Svetlana A. Barannikova
Affiliation:
Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Science, Akademicheskii Pr. 2/4, 634021 Tomsk, Russia. Department of Physics and Engineering, Tomsk State University, 36 Lenin Prospekt, 634050 Tomsk, Russia.
Olle Hellman
Affiliation:
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
Olga Yu. Vekilova
Affiliation:
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
Sergei I. Simak
Affiliation:
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
Andrei V. Ruban
Affiliation:
Applied Material Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
Get access

Abstract

We review basic ideas behind state-of-the-art techniques for first-principles theoretical simulations of the phase stabilities and properties of alloys. We concentrate on methods that allow for an efficient treatment of compositional and thermal disorder effects. In particular, we present novel approach to evaluate free energy for strongly anharmonic systems. Theoretical tools are then employed in studies of two materials systems relevant for nuclear energy applications: Fe-Cr and Zr-based alloys. In particular, we investigate the effect of hydrostatic pressure and multicomponent alloying on the mixing enthalpy of Fe-Cr alloys, and show that in the ferromagnetic state both of them reduce the alloy stability at low Cr concentration. For Zr-Nb alloys, we demonstrate how microscopic parameters calculated from first-principles can be used in higher-level models.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Marquis, E. A., Hyde, J. M., Saxey, D. W., Lozano-Perez, S., de Castro, V., Hudson, D., Williams, C. A., Humphry-Baker, S. and Smith, G. D.W., Materials Today 12, 30 (2009)10.1016/S1369-7021(09)70296-2CrossRefGoogle Scholar
Ruban, A. V. and Abrikosov, I. A., Rep. Prog. Phys. 71, 046501 (2008).10.1088/0034-4885/71/4/046501CrossRefGoogle Scholar
Hellman, O., Abrikosov, I. A., and Simak, S. I., Phys. Rev. B 84, 180301(R) (2011).10.1103/PhysRevB.84.180301CrossRefGoogle Scholar
Olsson, P., Abrikosov, I. A., Vitos, L., and Wallenius, J., J. Nucl. Mat. 321, 84 (2003); P. Olsson, I. A. Abrikosov, and J. Wallenius, Phys. Rev. B 73, 104416 (2006).10.1016/S0022-3115(03)00207-1CrossRefGoogle Scholar
Klaver, T. P. C., Drautz, R., and Finnis, M. W., Phys. Rev. B 74, 094435 (2006); M. Yu. Lavrentiev, R. Drautz, D. Nguyen-Manh, T. P. C. Klaver, and S. L. Dudarev, ibid. 75, 014208(2007); P. A. Korzhavyi, A. V. Ruban, J. Odqvist, J.-O. Nilsson, and B. Johansson, ibid., 79, 054202 (2009). 10.1103/PhysRevB.74.094435CrossRefGoogle Scholar
Ruban, A. V., Korzhavyi, P. A., and Johansson, B., Phys. Rev. B 77, 094436 (2008).10.1103/PhysRevB.77.094436CrossRefGoogle Scholar
Ponomareva, A. V., Ruban, A. V., Vekilova, O. Yu., Simak, S. I., and Abrikosov, I. A., Phys. Rev. B 84, 094422 (2011).10.1103/PhysRevB.84.094422CrossRefGoogle Scholar
Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).10.1103/PhysRevB.45.13244CrossRefGoogle Scholar
Wang, Y. and Perdew, J. P., Phys. Rev. B 44, 13298 (1991); J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, ibid. 46, 6671 (1992). 10.1103/PhysRevB.44.13298CrossRefGoogle Scholar
Soven, P., Phys. Rev. 156, 809 (1967).10.1103/PhysRev.156.809CrossRefGoogle Scholar
Vitos, L., Abrikosov, I. A., and Johansson, B., Phys. Rev. Lett. 87, 156401 (2001).10.1103/PhysRevLett.87.156401CrossRefGoogle Scholar
Barannikova, A., Ponomareva, A. V., Zuev, L. B., Vekilov, Yu. Kh., and Abrikosov, I. A., Solid State Commun. 152, 784 (2012).10.1016/j.ssc.2012.01.044CrossRefGoogle Scholar
Alling, B., Ruban, A. V., Karimi, A., Hultman, L., and Abrikosov, I. A., Phys. Rev. B 83, 104203 (2011).10.1103/PhysRevB.83.104203CrossRefGoogle Scholar
van de Walle, A. and Ceder, G., Rev. Mod. Phys 74, 11 (2002); G. Grimvall, B. Magyari-Köpe, V. Ozolins, K. A. Persson, ibid. 84, 945 (2012).10.1103/RevModPhys.74.11CrossRefGoogle Scholar
Ruban, A. V. and Skriver, H. L., Phys. Rev. B 66, 024201 (2002); A. V. Ruban, S. I. Simak, P. A. Korzhavyi, and H. L. Skriver, ibid. 66, 024202(2002); A. V. Ruban, S. Shallcross, S. I. Simak, and H. L. Skriver, ibid. 70, 125115 (2004).10.1103/PhysRevB.66.024201CrossRefGoogle Scholar
Ruban, A. V. and Razumovskiy, V. I., Phys. Rev. B (in press)Google Scholar
Zuev, L.B., Gorbatenko, V.V., Polyakov, S.N., “Instrumentation for speckle interferometry and techniques for investigating deformation and fracture”, Proceedings of SPIE, Vol. 4900, Part 2, pp. 11971208 (2002).10.1117/12.484526CrossRefGoogle Scholar
Zuev, L.B. and Barannikova, S.A., Natural Science 2, 476 (2010).10.4236/ns.2010.25059CrossRefGoogle Scholar
Zuev, L.B. and Barannikova, S.A., J. Mod. Phys. 1, 18 (2010).10.4236/jmp.2010.11001CrossRefGoogle Scholar