No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
This paper presents a multiple magnetoelastic (ME) biosensor system for in-situ detection of S. typhimurium and B. anthracis spores in a flowing bacterial/spore suspension (5 x 101 - 5 x 108 cfu/ml). The ME biosensor was formed by immobilizing filamentous phage (specific to each detection target) on the ME platforms. An alternating magnetic field was used to resonate the ME biosensor to determine its resonance frequency. When cells/spores are bound to a ME biosensor surface, the additional mass of the cells/spores causes a decrease in the resonance frequency of the biosensor. The detection system was composed of a control sensor, an E2 phage-based biosensor (specific to S. typhimurium) and a JRB7 phage-based biosensor (specific to B. anthracis spores). The frequency response curves of the ME biosensors as a function of exposure time were then measured and the detection limit of the ME biosensor was observed to be 5 x 103 cfu/ml. The results show that phage-based ME biosensors can detect multiple pathogens simultaneously and offer good performance, including good sensitivity and rapid detection.