Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:45:31.292Z Has data issue: false hasContentIssue false

Multiphoton Ionization Mass Spectroscopy of Fullerenes in Methane Diffusion Flames

Published online by Cambridge University Press:  15 February 2011

H. Hepp
Affiliation:
Laboratory for Solid State Physics, Swiss Federal Institute of Technology (ETH), CH-8093 Zuerich, Switzerland
K. Siegmann
Affiliation:
Laboratory for Solid State Physics, Swiss Federal Institute of Technology (ETH), CH-8093 Zuerich, Switzerland
K. Sattler
Affiliation:
Department of Physics and Astronomy, University of Hawaii, Honolulu, HI
Get access

Abstract

Multiphoton ionization time-of-flight mass spectrosocopy is used as an on-line technique to investigate polycyclic aromatic hydrocarbons (PAH) and fullerenes in atmospheric pressure flames. We have recorded height profiles of neutral PAH and fullerenes in methane/argon diffusion flames. Fullerenes ranging from C32 to at least C150 are found in a region where PAH concentration starts to decrease. Uniformity of the profiles indicates that the fullerenes do not grow from smaller to larger ones. The influence of the amount of argon additive is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kräitschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
2. Zhang, Q.L., O'Brien, S.C., Heath, J.R., Liu, Y., Curl, R.F., Kroto, H.W., and Smalley, R.E., J. Phys. Chem. 90, 525 (1986).Google Scholar
3. Gerhardt, Ph., Löffler, S., and Homann, K.H., Chem. Phys. Lett. 137, 306 (1987).Google Scholar
4. Baum, Th., Löffler, S., Löffler, Ph., Weilmünster, P., and Homann, K.H., Ber. Bunsen-Ges. Phys. Chem. 96, 841, (1992).Google Scholar
5. Ahrens, J., Kovacs, R., Shafranovskii, E.A., and Homann, K.H., Ber. Bunsen-Ges. Phys. Chem. 98, 265, (1994).Google Scholar
6. Howard, J.B., McKinnon, J.T., Makarovsky, Y., Lafleur, A.L., and Johnson, M.E., Nature 352, 139 (1991); J. Phys. Chem. 96, 6657 (1992).Google Scholar
7. Howard, J.B., Twenty-Fourth Symposium (International) on Combustion; The Combustion Institute: Pittsburgh 1992, p 933.Google Scholar
8. Bachmann, M., Griesheimer, J., Homann, K.H., Chem. Phys. Lett. 223, 506 (1994).Google Scholar
9. Malhotra, R., and Ross, D.S., J. Phys. Cham., 95, 4599 (1991).Google Scholar
10. Hepp, H., Siegmann, K., and Sattler, K., submitted to Chem. Phys. Lett.Google Scholar
11. Siegmann, K., Hepp, H., and Sattler, K., Surface Review and Letters, in print.Google Scholar
12. Pope, C.J., Marr, J.A., and Howard, J.B., J. Phys. Chem. 97, 11001 (1993).Google Scholar
13. Burtscher, H., Matter, D., and Siegmann, H.C., Atmospheric Environment 27A, 1255 (1993).Google Scholar
14. Loepfe, M., Siegmann, H. C., and Sattler, K., Z. Phys. D -Atoms, Molecules and Clusters- 26, S 311313 (1993).Google Scholar
15. Campbell, E.E.B., Ulmer, G., and Hertel, I.V., Phys. Rev. Lett. 67, 1986 (1991).Google Scholar
16. Siegmann, K., Hepp, H., and Sattler, K., submitted to Ber. Bunsen-Ges. Phys. Chem..Google Scholar