Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T01:32:39.572Z Has data issue: false hasContentIssue false

MULTILAYER X-RAY REFLECTORS: EFFECTS OF LAYER IMPERFECTIONS

Published online by Cambridge University Press:  28 February 2011

J. Wood
Affiliation:
Ovonic Synthetic Materials Co., A Div. of Energy Conversion Devices, Inc. 1788 Northwood Dr., Troy, Michigan 48084
N. Grupido
Affiliation:
Ovonic Synthetic Materials Co., A Div. of Energy Conversion Devices, Inc. 1788 Northwood Dr., Troy, Michigan 48084
K. Hart
Affiliation:
Ovonic Synthetic Materials Co., A Div. of Energy Conversion Devices, Inc. 1788 Northwood Dr., Troy, Michigan 48084
S. Flessa
Affiliation:
Ovonic Synthetic Materials Co., A Div. of Energy Conversion Devices, Inc. 1788 Northwood Dr., Troy, Michigan 48084
A. Kadin
Affiliation:
Ovonic Synthetic Materials Co., A Div. of Energy Conversion Devices, Inc. 1788 Northwood Dr., Troy, Michigan 48084
J. Keem
Affiliation:
Ovonic Synthetic Materials Co., A Div. of Energy Conversion Devices, Inc. 1788 Northwood Dr., Troy, Michigan 48084
D. Ferris
Affiliation:
Ovonic Synthetic Materials Co., A Div. of Energy Conversion Devices, Inc. 1788 Northwood Dr., Troy, Michigan 48084
Get access

Abstract

Periodic multilayer structures, consisting of largely amorphous alternating layers of heavy and light elements, have been fabricated by sputtering techniques. Investigations have been carried out into the effects of various types of layer imperfections on the x-ray optical properties of these multilayers. These have included extensive numerical modeling of real multilayers (using a computational scheme based on the complete dynamical theory) with simulations of diffused interfaces and deviations from constant d-spacing. Results are presented for examples of W–C and Hf–Si multilayers, with comparison of measurements at Cu–K to the theoretical model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Marshall, G.F., Ed., Applications of Thin-Film Multilayered Structures to Figured X-Ray Optics, Proc. SPIE, Vol. 563, Bellingham, Washington (1985), papers and references therein.Google Scholar
2.Ovshinsky, S.R., U.S. Patent #4,520,039, filed Sept. 23, 1982.Google Scholar
3. Kadin, A.M., Burkhardt, R.W., Chen, J.T., Keem, J.E., and Ovshinsky, S.R., in Layered Structures, Epitaxy, and Interfaces, Ed. Gibson, J.M., Proc. MRS Symposia, Vol. 37, p. 503 (1985).Google Scholar
4. Contardi, L., Chao, S.S., Keem, J., and Tyler, J., Scanning Electron Microscopy II, p. 577 (SEM Inc., Chicago 1984).Google Scholar
5. Underwood, J.H. and T.W. Barbee Jr., Applied Optics, 20, 3027 (1981). Note the erratum below Eq. (33) - it should be g&=sin0, not Fl.Google Scholar
6. Kadin, A.M. and Keem, J.E., to appear in Scripta MKtallurgica (1986).Google Scholar
7. Vidal, B. and Vincent, P., Applied Optics 23, 1794 (1984).CrossRefGoogle Scholar
8. Henke, B.L., et al., in ref. 1,'p. 201.Google Scholar
9. Lee, P., Optics Commun. 37, 159 (1981).Google Scholar
10. Henke, B.L., et al., Atomic and Nuclear Data Tables 27, 1 (1982).Google Scholar
11. Palik, E.D., Ed., Handbook of Optical Constants of Solids, Academic (1985)Google Scholar
12. Lepetre, Y. and Rasigni, G., Optics Lett.9, 433 (1984).Google Scholar
13. Stearns, M.B., private commun. and submitted to Am. Phys. Soc. (1986).Google Scholar
14. Barbee, T.W., Jr., p.2 in ref. 1.Google Scholar
15. Spiller, E. and Rosenbluth, A.E., p. 221 in ref. 1.Google Scholar