Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T07:23:48.542Z Has data issue: false hasContentIssue false

Multilayer Graphene-Based Carbon Interconnect

Published online by Cambridge University Press:  28 February 2012

Tianhua Yu
Affiliation:
College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12203, U.S.A. Novellus Systems Inc. San Jose, CA 95134, U.S.A.
Edwin Kim
Affiliation:
College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12203, U.S.A.
Nikhil Jain
Affiliation:
College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12203, U.S.A.
Bin Yu
Affiliation:
College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12203, U.S.A.
Get access

Abstract

3D stacked (or uncorrelated) multilayer graphene (s-MLG) is investigated as a potential material platform for carbon-based on-chip interconnects. S-MLG samples are prepared by repeatedly transferring and stacking the large-area CVD-grown graphene monolayers, followed by wire patterning and oxygen plasma etching of graphene. We observed superior wire conduction of s-MLG over that of monolayer graphene or ABAB-stacked multilayer graphene. Further reduction of s-MLG resistivity is anticipated with increasing number of stacked layers. Electrical stress-induced doping technique is used to engineer the Dirac point, as well as to reduce graphene-to-metal contact resistance, improving the overall performance metrics of the s-MLG system. Breakdown experiments show that the current-carrying capacity of s-MLG is significantly enhanced as compared with that of monolayer graphene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Josell, D., Brongersma, S. H., and Tőkei, Z., Annu. Rev. Mater. Res. 39, 231 (2009).Google Scholar
2. www.itrs.net, ITRS 2010 Edition.Google Scholar
3. Wang, P. and Filippi, R. G., Appl. Phys. Lett. 78, 3578 (2001).Google Scholar
4. Saito, T., Yamada, T., Fabris, D., Kitsuki, H., Wilhite, P., Suzuki, M., and Yang, C., Appl. Phys. Lett. 93, 102108 (2008).Google Scholar
5. Collins, P. G., Hersam, M., Arnold, M., Martle, R., and Avouris, P., Phys. Rev. Lett. 86, 3128 (2001).Google Scholar
6. Kitsuki, H., Yamada, T., Fabris, D., Jameson, J., Wilhite, P., Suzuki, M., and Yang, C., Appl. Phys. Lett. 92, 173110 (2008).Google Scholar
7. Geim, A. K. and Novoselov, K. S., Nature Mater. 6, 183 (2007).Google Scholar
8. Du, X., Skachko, I., Barker, A., and Andrei, E. Y., Nat. Nano. 3, 491 (2008).Google Scholar
9. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., Nano Lett. 8, 902 (2008).Google Scholar
10. Naeemi, A. and Meindl, J. D., IEEE Electron Dev. Lett. 28, 428 (2007).Google Scholar
11. Yu, T. Lee, E. Briggs, B., Nagabhirava, B., Yu, B., IEEE Electron Dev. Lett. 31, 1155 (2010).Google Scholar
12. Murali, R., Yang, Y., Brenner, K., Beck, T., and Meindl, J. D., Appl. Phys. Lett. 94, 3114 (2009).Google Scholar
13. Sui, Y. and Appenzeller, J., Nano Lett. 9, 2973 (2009).Google Scholar
14. Murali, R., Brenner, K., Yang, Y., Beck, T., and Meindl, J. D., IEEE Electron Dev. Lett. 30, 611 (2009).Google Scholar
15. Ferrari, A., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K., Roth, S., and Geim, A., Phys. Rev. Lett. 97, 187401 (2006).Google Scholar
16. Venugopal, A., Colombo, L., and Vogel, E. M., Appl. Phys. Lett., 96, 013512 (2011).Google Scholar
17. Nagashio, K., Nishimura, T., Kita, K., and Toriumi, A., Jpn. J. Appl. Phy., 49, 051304 (2010).Google Scholar
18. Brenner, K. and Murali, R., Appl. Phys. Lett. 96, 063104 (2010).Google Scholar
19. Moser, J., Barreiro, A., and Bachtold, A., Appl. Phys. Lett. 91, 163513 (2007).Google Scholar
20. Wang, P. and Filippi, R. G., Appl. Phys. Lett. 78, 3578 (2001).Google Scholar