Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T06:34:09.219Z Has data issue: false hasContentIssue false

Multilayer Fresnel Zone Plate For 8KeV X-Ray by DC Magnetron Sputtering Deposition

Published online by Cambridge University Press:  10 February 2011

S. Tamura
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka, Japan
K. Mori
Affiliation:
Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka, Japan
T. Maruhashi
Affiliation:
Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka, Japan
K. Yoshida
Affiliation:
Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka, Japan
K. Ohtani
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka, Japan
N. Kamijyo
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka, Japan
Y. Suzuki
Affiliation:
Advanced Research Laboratory, Hitachi Ltd., Hatoyama, Saitama, Japan
H. Kihara
Affiliation:
Kansai Medical University, Hirakata, Osaka, Japan
Get access

Abstract

Hard X-ray microprobes from synchrotron radiation ( SR ) sources should be powerful tools for various fields of research. A Fresnel zone plate ( FZP ) is a promising focusing element for X-ray. In order to develop high performance multilayer FZP for use in hard X-ray region, Ag/C and Cu/Al concentric multilayers were prepared by some deposition parameters. A dependence of the zone boundary structures on the Ar gas pressure was observed: the multilayer prepared at lower Ar gas pressure had smoother zones. Substrate cooling did not improve the zone boundary structures. From the focusing test of the Cu/Al FZP by the SR, a microbeam of 1.3 μ m ø has been obtained for 8 KeV X-ray (λ =0.154nm).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aritome, H., Aoki, H. and Namba, S., J. Vac. Sci. Technol. B3, 265 ( 1985 ).Google Scholar
2. Saitoh, K., Inagawa, K., Kohra, K., Iida, A. and Kato, N., Jpn. J. Appl. Phys., 27, L2131 ( 1988 ); Rev. Sci. Instrum. 60, 1519 (1989 ).Google Scholar
3. Bionta, R.M., Ables, E., Clamp, O., Edwards, O.D., Gabriere, P.C., Miller, K., Ott, L.L., Skulina, K.M., Tilley, R. and Viada, T., Opt. Eng. 29, 576 ( 1990 ).Google Scholar
4. Lai, B., Chrzas, J., Yun, W.B., Legnini, D., Viccaro, P. J., Bionta, R.M. and Skulina, K.N., Proc. SPIE, 1550, 46 (1991).Google Scholar
5. Kaulich, B.: Abstract of XRM' 96 ( International Conference on X - Ray Microscopy and Spectroscopy ), O- 12 ( 1996 ).Google Scholar
6. Fabrizio, E. Di, Gentili, M., Grella, L., Baciocchi, M., Krasnoperva, A., Cerrina, F., Yun, W.B., Lai, B. and Gluskin, E., J. Vac. Sci. Technol. B12, 3979 ( 1994 ).Google Scholar
7. Lai, B., Yun, W.B., Xiao, Y., Yang, L., Legnini, D., Cai, Z., Krasnoperva, A., Cerrina, F., Fablizio, E. Di, Grella, L. and Gentili, M., Rev. Sci. Instrum. 66, 2287 ( 1995 ).Google Scholar
8. Tamura, S., Ohtani, K. and Kamijo, N., Appl. Surf. Sci. 79/80, 514 ( 1994 )Google Scholar
9. Kamijo, N., Tamura, S., Suzuki, Y. and Kihara, H., Rev. Sci. Instrum. 66, 2132 ( 1995 ).Google Scholar
10. Tamura, S., Ohtani, K., Kamijo, N., Suzuki, Y. and Kihara, H., Thin Solid Films 281/282, 243 ( 1996 ).Google Scholar
11. Kamijo, N., Tamura, S., Suzuki, Y., Handa, K., Takeuchi, A., Yamamoto, S., Ando, M., Ohsumi, K. and Kihara, H., Rev.Sci.Instrum., ( to be published ).Google Scholar
12. Stearns, D. G., Rosen, R.S. and Vernon, S.P., J. Vac. Sci. Technol. A9, 2662 ( 1991 ).Google Scholar
13. Thornton, J.A., J. Vac. Sci. Technol. A4, 3059 ( 1986 ).Google Scholar
14. Windt, D.L., Brown, W.L., Volkert, C.A. and Waskiewicz, W.K., J. Appl. Phys. 78, 2423 ( 1995 )Google Scholar