Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T15:16:41.235Z Has data issue: false hasContentIssue false

Multilayer Ceramic Capacitors Based on Pb(Mg1/3Nb2/3)O3

Published online by Cambridge University Press:  25 February 2011

O. Bouquin
Affiliation:
ENS Céramique Industrielle, 47 à 73, av. A. rhomas, 87065 LIMOGES CEDEX(FR)
M. Lejeune
Affiliation:
ENS Céramique Industrielle, 47 à 73, av. A. rhomas, 87065 LIMOGES CEDEX(FR)
J. P. Boilot
Affiliation:
Ecole Polytechnique- Groupe de Chimie du Solide, Laboratoire de Physique de la Matière Condensée, 91128 Palaiseau Cédex France
Get access

Abstract

Multilayer capacitors were made from Pb(Mg1/3Nb2/3)O3 compositon by an usual technique: ceramic green sheets formed by slip casting method, printed with an 70% wt Ag- 30% wt Pd internal electrode and sintered at temperature ranging from 950 to 11OO°C. Chip capacitors exhibit large capacitance and temperature characteristics meet Z5U specification. Electrical properties of MLC based on PMN depend on specific parameters such as the average concentration of pyrochlore phase and perovskite phase, and the homogeneity degree of dielectric layers. Load humidity life tests show a degradation of some chips which can be connected with the formation of a surface layer rich in pyrochlore phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Herbert, J.M., Trans. Brit. Ceram. Soc. 62, 645 (1963).Google Scholar
2. Herbert, J.M., Proc. IEE. 112, 1474 (1965).Google Scholar
3. Burn, I. and Maher, G.H., J. Mat. Science. 10, 633 (1975).Google Scholar
4. Sakabe, Y., Minai, K. and Wakino, K., J. Appl. Phys. 20 (Suppl. 20–4), 147 (1981).Google Scholar
5. Yonesawa, M., Utsumi, K. and Ohno, T., Procd. 1st Mtg on Ferroelectric Mat. and Appl., Kyoto, Japan. 297 (1977).Google Scholar
6. Yonesawa, M., Utsumi, K. and Ohno, T., Procd. 2nd Mtg on Ferroelectric Mat. and Appl., Kyoto, Japan. 215 (1979).Google Scholar
7. Yonezawa, M., Ceram. Bull. 62, 1375 (1983).Google Scholar
8. Takamizawa, H., Utsumi, K., Yonezawa, M. and Ohno, T., IEE transactions on Components, hybrids and manufacturing technology. 4, 345 (1981).CrossRefGoogle Scholar
9. Jang, S.J., Shulze, W.A. and Biggers, J.V., Ceramic Bull. 62, 216 (1983).Google Scholar
10. Lejeune, M. and Boilot, J.P., Ceramics International. 8, 99 (1982).CrossRefGoogle Scholar
11. Lejeune, M. and Boilot, J.P., Ceramics International. 9, 119 (1983).CrossRefGoogle Scholar
12. Swartz, S.L., Shrout, T.R., Mat. Res. Bull. 17, 1245 (1982).Google Scholar
13. Swartz, S.L., Shrout, T.R., Schulze, W.A. and Cross, L.E., J. Am. Ceram. Soc 67, 311 (1984).Google Scholar
14. Swartz, S.L., Shrout, T.R., Schulze, W.A. and Cross, L.E., J. Am. Ceram. Soc 68, C 87 (1985).Google Scholar
15. Lejeune, M. and Boilot, J.P., Ferroelectrics. 54, 191 (1984).Google Scholar
16. Lejeune, M. and Boilot, J.P., Mat. Res. Bull. 20, 493 (1985).CrossRefGoogle Scholar
17. Smolenskii, G.A., J. Phys. Soc. Jpn. 28, 26 (1970).Google Scholar
18. Choo, W.K. and Lee, M.H., J. Appl. Phys. 53, 7355 (1982).Google Scholar
19. Lejeune, M. and Boilot, J.P., Bull of Am. Ceram. Soc. to be published (1986).Google Scholar