Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:07:31.562Z Has data issue: false hasContentIssue false

Multilayer BiFeO3/PbTiO3 Multiferroic Ceramic Composites Prepared by Tape Casting

Published online by Cambridge University Press:  18 September 2014

Guoxi Jin
Affiliation:
School of Materials Science and Engineering, Shanghai University, 200444, P.R. China
Jianguo Chen*
Affiliation:
School of Materials Science and Engineering, Shanghai University, 200444, P.R. China
Jinrong Cheng*
Affiliation:
School of Materials Science and Engineering, Shanghai University, 200444, P.R. China
*
*corresponding author: [email protected]
Get access

Abstract

The BiFeO3 (BFO) / PbTiO3 (PT) multiferroic ceramic composites with multilayered structure were prepared from orderly laminated BFO and PT tapes by tape casting method. The dielectric constant εr, loss tanδ, remnant polarization Pr and field-induced strain of BFO/PT ceramic composites were 140 (1 kHz), 5% (1 kHz), 12 µC/cm2 (at 80 kV/cm) and 0.06% (at 80 kV/cm) respectively, which were comparable to those pure BFO ceramics and BFO-based solid solutions

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ma, J., Hu, J. M., Li, Z., Nan, C.W., Adv. Mater., 23, 10621087 (2011).CrossRefGoogle Scholar
Zhou, C. C., Luo, B. C., Jin, K. X., Cao, X. S., Chen, C. L., Solid State Commun., 150, 13341337 (2010).CrossRefGoogle Scholar
Dai, Z. H., Akishige, Y., Ceram. Int., 38, S403S406 (2012).CrossRefGoogle Scholar
Rawat, M., Yadav, K. L.. J. Alloy. Compd., 597, 188199 (2014)CrossRefGoogle Scholar
Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., Ramesh, R., Science, 299, 1719 (2003).CrossRefGoogle Scholar
Wang, D. H., Yan, L., Ong, C. K., Du, Y. W., Appl. Phys. Lett., 89, 182905 (2006).CrossRefGoogle Scholar
Woodward, D. I., Reaney, I. M., Eitel, R. E., Randal, C. A., J. Appl. Phys., 94, 3313 (2003).CrossRefGoogle Scholar
Singh, K., Negi, N. S., Kotnala, R. K., Singh, M., Solid State Commun., 148, 1821 (2008).CrossRefGoogle Scholar
Gotardo, R. A., Santos, I. A., Cotica, L. F., Botero, E. R., Garcia, D., Eiras, J. A., Scripta Mater., 61, 508511 (2009).CrossRefGoogle Scholar
Leist, T., Granzow, T., Jol, W., Rodel, J., J. Appl. Phys., 108, 014103 (2010).CrossRefGoogle Scholar
Cheng, J. R., Eitel, R., Cross, L. E., J. Am. Ceram. Soc., 86[12], 21112115 (2003).CrossRefGoogle Scholar
Cheng, J. R., Li, N., Cross, L. E., J. Appl. Phys., 94, 5153 (2002).CrossRefGoogle Scholar
Shi, G. Y., Chen, J. G., Zhao, L., Yu, S. W., Cheng, J. R., Hong, L., Li, G. R., Curr. Appl. Phys., 11(3), S251S254 (2011).CrossRefGoogle Scholar
Shi, G. Y., Feng, L., Bu, S. D., Ruan, W., Li, G., Yang, T., Cheng, J. R., Smart Mater. Struct., 21, 065009 (2012).CrossRefGoogle Scholar
Jin, G. X., Chen, J. G., Bu, S. D., Wang, D. L., Dai, R., Cheng, J. R., Mater. Res. Soc. Symp. Proc., 1547, 6166 (2013).CrossRefGoogle Scholar
Wang, Y. P., Zhou, L., Zhang, M. F., Chen, X. Y., Liu, J. M., Liu, Z. G., Appl. Phys. Lett., 84, 1731 (2004).CrossRefGoogle Scholar
Rojac, T., Kosec, M., Damjanovic, D., J. Am. Ceram. Soc., 94[12], 41084111 (2011).CrossRefGoogle Scholar