Published online by Cambridge University Press: 29 July 2011
The University of Florida (UF) have recently collaborated with Raith Inc. to modify Raith’s ion beam lithography, nanofabrication and engineering (ionLiNE) station that utilizes only Ga ions, into a multi-ion beam system (MionLiNE) by adding the capabilities to use liquid metal alloy sources (LMAIS) to access a variety of ions and an EXB filter for mass separation. The MionLiNE modifications discussed below provide a wide range of spatial and temporal precision that can be used to investigate ion solid interactions under extended boundary conditions, as well as for ion lithography and nanofabrication. Here we demonstrate the ion beam lithographic capabilities of the MionLiNE for fabricating patterned arrays of Au and Si nanocrystals, with nanoscale dimensions, in SiO2 substrates, by direct implantation; and show that the same directwrite/maskless-implantation features can be used for in situ fabrication of nanoelectronic devices. Additionally, the spatial and temporal capabilities of the MionLiNE are used to explore the effects of dose rate on the long-standing surface morphological transformation that occurs in ion bombarded Ge.