Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:30:19.114Z Has data issue: false hasContentIssue false

Multifunctional Molecular and Polymeric Materials for Nonlinear Optics and Photonics

Published online by Cambridge University Press:  21 February 2011

Paras N. Prasad*
Affiliation:
Photonics Research Laboratory, Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14214
Get access

Extract

Molecular units in natural systems are multifunctional in that they exhibit more than one functionalities. This is nature's way of economizing and being efficient. For many technological applications, there is a need for synthetic multifunctional materials which simultaneously exhibit many necessary physical and chemical properties. By appropriate modification of structures both at the molecular and bulk levels, one can incorporate such multifunctionality in molecular and polymeric systems. Our research program focuses on investigations of multifunctional materials for applications in photonics. Photonics describes the emerging new technology in which a photon instead of an electron is used to acquire, process, store and transmit information.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prasad, P.N., Perrin, E., and Samoc, M., J. Chem. Phys. 91, 2360 (1989).Google Scholar
2. Chopra, P., Carlacci, L., King, H.F., and Prasad, P.N., J. Phys. Chem. 93, 7120 (1989).Google Scholar
3. Prasad, P.N., in Nonlinear Optical and Electroactive Polymers, edited by Prasad, P.N. and Ulrich, D.R. (Plenum Press, New York, 1988), p. 41.Google Scholar
4. Prasad, P.N., in Nonlinear Optical Properties of Polymers, Materials Research Society Symposium Proceedings Vol 109 Eds. Heeger, A.J., Orenstein, J., and Ulrich, D. R. (1988) p. 271.Google Scholar
5. Prasad, P.N., in Nonlinear Optical Effects in Organic Polymers, eds. Messier, J., Kajzar, F., Prasad, P., and Ulrich, D., NATO ASF Series E, Vol.162 (1989) p. 351.Google Scholar
6. Prasad, P.N., in Organic Materials for Non-linear Optics, edited by Hann, R.A. and Bloor, D. (Royal Society of Chemistry, London, 1989), p. 264.Google Scholar
7. Perrin, E., Prasad, P.N., Karna, S.P. and Dupuis, M., submitted to J. Chem. Phys.Google Scholar
8. Perrin, E., Prasad, P.N., Mougenot, P. and Dupuis, M., J. Chem. Phys. 91, 4728 (1989).Google Scholar
9. Zhao, M.T., Singh, B.P., and Prasad, P.N., J. Chem. Phys. 89, 5535 (1988).Google Scholar
10. Zhao, M.T., Samoc, M., Singh, B.P., and Prasad, P.N., J. Phys. Chem. 93, 7916 (1989).Google Scholar
11. Ghosal, S., Samoc, M., Prasad, P.N., and Tufariello, J.J., J. Phys. Chem. (in Press).Google Scholar
12. Prasad, P.N., Casstevens, M.K., Pfelger, J., and Logsdon, P., Symposium on Multifunctional Materials - SPIE Proceedings Vol.878 (1988) p. 106112.Google Scholar
13. Casstevens, M., Samoc, M., Pfleger, J., and Prasad, P.N., J. Chem. Phys. (in Press).Google Scholar
14. Biegajski, J.E., Cadenhead, D.A., and Prasad, P.N., Langmuir 4, 689693 (1988).Google Scholar
15. Huang, X., Burzynski, R., and Prasad, P.N., Langmuir 5, 325329 (1989).Google Scholar
16. Logsdon, P., Pfleger, J., and Prasad, P.N., Synthetic Metals 26, 369 (1988).Google Scholar
17. Carpenter, M.M., Prasad, P.N., and Griffin, A.C., Thin Solid Films 161, 315 (1988).Google Scholar
18. Huang, X., Zhao, M.T., Janiszewska, L., and Prasad, P.N., Synthetic Metals 24, 245 (1988).Google Scholar
19. Burzynski, R., Zanoni, R.J., Assanto, G., Stegeman, G.I., and Prasad, P.N., submitted to J. Appl. Optics.Google Scholar
20. Burzynski, R., Prasad, P.N., and Karasz, F.E., Polymer (in Press).Google Scholar
21. Singh, B.P., Prasad, P.N., and Karasz, F.E., Polymer 239, 1940 (1988).Google Scholar
22. Prasad, P.N., Swiatkiewicz, J. and Pfleger, J., Molecular Crystals and Liquid Crystals 160, 53 (1988).Google Scholar
23. Ghoshal, S.K., Chopra, P., Singh, B.P., Swiatkiewicz, J. and Prasad, P.N., J. Chem. 90, 5078 (1989).Google Scholar
24. Singh, B.P., Samoc, M., Nalwa, H.S., and Prasad, P.N., J. Chem. Phys. (in Press).Google Scholar
25. Samoc, M. and Prasad, P.N., J. Chem. Phys. 91, 6643 (1989).Google Scholar
26. Burzynski, R., Singh, B.P., Prasad, P.N., Zanoni, R., and Stegeman, G.I., Appl. Phys. Lett. 53, 2011 (1988).Google Scholar
27. Prasad, P.N., in Ultrastructure Processing of Ceramics, Glasses and Composites eds. Uhlman, O. and Ulrich, D.R., John Wiley (in Press).Google Scholar
28. Wung, C.J., Pang, Y., Prasad, P.N., and Karasz, F.E., submitted for publioation'to Polymer.Google Scholar
29. He, G.S. and Prasad, P.N., Phys. Rev. A (in Press).Google Scholar
30. He, G.S. and Prasad, P.N., Optics Commun. 73, 161 (1989).Google Scholar
31. He, G.S., Xu, G.C., Burzynski, R., and Prasad, P.N., Optics Commun. 72, 397 (1989).Google Scholar