Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T04:19:31.906Z Has data issue: false hasContentIssue false

Multifunctional Fullerene Films for Photonics

Published online by Cambridge University Press:  10 February 2011

Y. Liu
Affiliation:
NanoSonic, Inc., 200 Country Club Drive, A-2, Blacksburg, VA 24060, [email protected]
R. O. Claus
Affiliation:
Fiber & Electro-Optics Research Center, Virginia Tech, Blacksburg, VA 24061-0356
Y.X. Wang
Affiliation:
Fiber & Electro-Optics Research Center, Virginia Tech, Blacksburg, VA 24061-0356
H. Lu
Affiliation:
Fiber & Electro-Optics Research Center, Virginia Tech, Blacksburg, VA 24061-0356
T. Distler
Affiliation:
NanoSonic, Inc., 200 Country Club Drive, A-2, Blacksburg, VA 24060, [email protected]
Get access

Abstract

We report here the preparation of highly homogeneous multifunctional fullerene thin films for photonics using the electrostatic self-assembled monolayer technique at room temperature for the first time. The monolayers and multilayers were characterized via contact angle measurements, UV-vis spectroscopy and atomic force microscopy. These results demonstrated that close-packed, highly uniform fullerene or fullerene/metal cluster films with micron-thickness could be formed on various substrates including silicon, glass, metal and plastics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985); R. C. Haddon, L. E. Brus, and K. Raghavachari, Chem. Phys. Lett. 125, 459 (1986).Google Scholar
2 Wang, X. K., Zhang, T. G., Lin, W. P., Liu, S. Z., Wong, G. K., Kappes, M. M., Chang, R. P. H., and Ketterson, J. B., Appl. Phys. Lett. 60, 810 (1992).Google Scholar
3 Kanbara, H., Maruno, T., Yamashita, A., Matsumoto, S., and Hayashi, T., J. Appl. Phys. 80, 3674 (1996).Google Scholar
4 Wang, Y., Nature 356, 585 (1992).Google Scholar
5 Zhang, Y., Cui, Y., and Prasad, P. N., Phys. Rev. B 46, 9900 (1992).Google Scholar
6 Kamat, P. V., J. Am. Chem. Soc. 113, 9705 (1991); J. R. Sension, A. Z. Szarka, G. R. Smith, R. M. Hochstrasser, Chem. Phys. Lett. 185, 179 (1991).Google Scholar
7 Obeng, Y. S., Bard, A. J., J. Am. Chem. Soc. 113, 6279 (1991); J. Guo, Y. Xu, Y. Li, C. Yang, Y. Yao, D. Zhu, C. Bai, Chem. Phys. Lett. 195, 625 (1992); Y. Tomioka, M. Ishibashi, H. Kajiyama, and Y. Taniguchi, Langmuir, 9, 32 (1993); M. Maggini, A. Karlsson, L. Pasimeni, G. Scorrano, M. Prato, L. Valli, Tetrahedron, Lett. 35, 2985 (1994); M. Matsumoto, H. Tachibana, R. Azumi, M. Tanake, and T. Nakamura, Langmuir, 11, 660 (1995).Google Scholar
8 Chen, K., Caldwell, W. B., Mirkin, C. A., J. Am. Chem. Soc. 115, 1193 (1993); J. A. Chupa, S. Xu, r. F. Fischetti, R. M. Strongin, J. P. jr. McCauley, A. B. Smity, J. K. Blasie, J. Am. Chem. Soc. 115, 4383 (1993); J. Z. Zhang, M. J. Geselbracht, A. B. Ellis, J. Am. Chem. Soc. 115, 7789 (1993).Google Scholar
9 Hebard, A. F., Annu. Rev. Mater. Sci. 23, 159 (1993).Google Scholar
10 A) Iler, R. J. Colloid Interface Sci. 21, 569 (1966); b) G. Decher, and J. D. Hong Ber. Bunsen-Gen. Phys. Chem. 95, 1430 (1991); c) W. S. Keller, H. N. Kim, and T. E. Mallouk, J. Am. Chem. Soc. 116, 8817 (1994); d)M. Ferreira, M. F. Rubner, Macromolecules 28, 7101 (1995); e) Y. Liu, A. Wang, and R. 0. Claus, Appl. Phys. Lett. 71, 2265 (1997).Google Scholar
11 Liu, Y., Claus, R. O., J. Appl. Phys. 1, 1 (1999).Google Scholar