Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:47:22.981Z Has data issue: false hasContentIssue false

Multifunctional Ferroic Nanocomposites

Published online by Cambridge University Press:  21 February 2011

R. E. Newnham
Affiliation:
Materials Research Laboratory, the Pennsylvania State University, University Park, PA 16802
S. E. McKinstry
Affiliation:
Materials Research Laboratory, the Pennsylvania State University, University Park, PA 16802
H. Ikawa
Affiliation:
Materials Research Laboratory, the Pennsylvania State University, University Park, PA 16802
Get access

Abstract

As trends towards miniaturized components and systems continue in many fields, there has been a rapid development in similarly scaled-down composites. In the electronics industry, these nanocomposites (and especially active nanocomposites based on ferroic elements) form a basis for many of the recent advances in both information and charge storage. While the overall properties of some of these composites can be explained as straightforward extrapolations from the bulk properties, in other instances the small size of the ferroic phase has important consequences on the macroscopic behavior of the composite. This paper reviews some of the recent developments in small-scale ferroic nanocomposites and details the relation between component size and the resultant properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Newnham, R. E., Ann. Rev. Mater. Sci. 1986. 16 47 (1986).Google Scholar
2. Kittel, C., Phys. Rev 70(11,12) 965 (1946).Google Scholar
3. Bean, C.P. and Jacobs, I.S., J. Appl. Phys. 27(12) 1448 (1956).Google Scholar
4. Cross, L.E. Ferroelectrics 70(3–4) 241 (1987).Google Scholar
5. Newnham, R. E. and McKinstry, S.E., Indianapolis Meeting of the American Ceramic Society 1989.Google Scholar
6. Marvin, Camras, Magentic Recording Handbook, (Van Nostrand Reinhold Company, New York, 1988)Google Scholar
7. White, Robert M., Sci. Amer. 243 138 (1980).Google Scholar
8. White, Robert M., IEEE Spectrum 20 32 (1983).Google Scholar
9. Kubo, O., Ido, T., Yokoyama, H., and Koike, Y., J. Apl. Phys. 57(1) 4280 (1985).Google Scholar
10. Tsuya, N., Saito, Y., Nakamura, H., Hayano, S., Furugohri, A., Ohta, K., Wakui, Y., and Tokushima, T., J. Mag. Mag. Mat. 54–57 16811682 (1986).Google Scholar
11. Noboru, Sato, J. Appl. Phys. 59(7) 2514 (1986).Google Scholar
12. Ochiai, Y., Hashimoto, S., and Aso, K., IEEE Trans. Mag. 25(5) 3755 (1989).Google Scholar
13. Zeper, W.B., Greidanusm, F.J.A.M. and Carcia, P.F., IEEE Trans. Mag. 25(5) 3764 (1989).Google Scholar
14. Honda, S., Nishimura, S., and Kusuda, T., IEEE Trans. Mag. 25(5) 4027 (1989).Google Scholar
15. Grundy, P.J., Babkair, S.S., and Ohkoshi, M., IEEE Trans. Mag. 25(5) 3626 (1989).Google Scholar
16. Bando, Y., Proc. Seventh Seminar on Frontier Technoloay - Nano-Hybridization and Creation of New Functions Feb. 7–10, 1989 Oiso, Japan.Google Scholar
17. Takano, M., Terashima, T., Bando, Y., and Ikeda, H., “Neutron diffraction study of artificial CoO-NiO superlattices,” Appl Phys. Lett 51(3) 205 (1987).Google Scholar
18. Berkovsky, B., ed., Thermomechnaics of Magnetic Fluids. (Hemisphere Publishing Corporation, Washington, 1978)Google Scholar
19. Jean-Claude, Bacri, Regine, Perzynski, and Dominique, Salin, Endeavor, New Series 12(2) 76 (1988).Google Scholar
20. Perry, M.P., in Thermomechanics of Maanetic Fluids. edited by Berkovsky, B. (Hemisphere Publishing Corporation, Washington 1978)Google Scholar
21. Rosenweig, Ronald E., Scientific American Oct. 1982. 136.Google Scholar
22. Mehta, R.V., in Thermomechanics of Magnetic Fluids. edited by Berkovsky, B. (Hemisphere Publishing Corporation, Washington 1978).Google Scholar
23. Daniel Stein, L., Scientific American July1989. 52.Google Scholar
24. Battle, P.D., Gibb, T.C., Lightfoot, P., and Matsui, M., submitted to J. Solid State Chem. (1989).Google Scholar
25. Gibb, T.C and Matsuo, M., J. Solid State Chem. 81 83 (1989).Google Scholar
26. Smolensky, G.A., J. Phys. Soc. Jpn 28 suppl. 26–37 (1970).Google Scholar
27. Chen, J., Chan, H. M., and Harmer, M.P., J. Am. Ceram. Soc. 72(4) 593 (1989).Google Scholar
28. Randall, C.A., Barber, D.J., Groves, P., and Whatmore, R.W., J. Mat. Sci. 23(10) 3678 (1988).Google Scholar
29. Randall, C.A. and Bhalla, A.S., submitted to Jap. J. Appl. Phy (1989).Google Scholar
30. Saito, K., Watanabe, T., and Kobayashi, J., Ferroelectrics 75 153 (1987).Google Scholar
31. Miller, D., unpublished workGoogle Scholar
32. Bachmann, R. and Bamer, K., Sol. State Comm. 68(9) 865 (1988).Google Scholar
33. Lee, M., Halliyal, A., and Newnham, R. E., Ferroelectrics 87 71 (1988).Google Scholar
34. Frits, Zemicke and Midwinter, John E., Applied Nonlinear Optics (John Wiley and Sons, New York 1973).Google Scholar
35. Coldren, L.A., Lemons, R.A., Glass, A.M., and Bonner, W.A., AppI. Phys. Lett 30(10) 506 (1977).Google Scholar
36. Virkar, A.V. and Matsumoto, R.L.K. J. Am. Ceram, Soc. 69(10) C224 (1986).Google Scholar
37. Swain, M.V. in Science and Technology of Zirconia III edited by Somiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Soc. Inc., Columbus, Ohio 1988) p. 439.Google Scholar
38. Michel, D., Mazerolles, L., and Jorba, M.P. in Science and Technology of Zirconia II, edited by Clausen, N., Ruhle, M., and Heuer, A. (The American Ceramic Society Inc., Columbus, Ohiol 1983) p. 131.Google Scholar
39. Ingel, R.P., Willging, P.A., and Bender, B.A. in Science and Technology of Zirconia III edited by Somiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Soc. Inc., Columbus, Ohio 1988) p. 459.Google Scholar
40. Evans, A.G. and Cannon, R.M. Acta Metall. 34(5) 761 (1986).Google Scholar
41. Urabe, K., Nakajima, A., Ikawa, H., and Udagawa, S. in Science and Technology of Zirconia III edited by Somiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Soc. Inc., Columbus, Ohio 1988) p. 345.Google Scholar
42. Meeks, S.W. and Auld, B.A., Adv. Electron. Electron. Phys. 71 251 (1988).Google Scholar
43. Kimura, T., Newnham, R.E., and Cross, L.E., Phase Trans. 2 113 (1981).Google Scholar