Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:16:51.449Z Has data issue: false hasContentIssue false

Multifunctional Elastomer Nanocomposites based on EPDM and Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Paola Ciselli
Affiliation:
[email protected], Queen Mary University of London, Centre for Materials Research, London, United Kingdom
Lan Lu
Affiliation:
[email protected], Queen Mary University of London, Centre for Materials Research, London, United Kingdom
James JC Busfield
Affiliation:
[email protected], Queen Mary University of London, Centre for Materials Research, London, United Kingdom
Ton Peijs
Affiliation:
[email protected], Queen Mary University of London, Centre for Materials Research, London, United Kingdom
Get access

Abstract

Elastomeric composites based on Ethylene-Propylene-Diene-Monomer (EPDM) filled with multi-wall carbon nanotubes (MWNTs) have been prepared, showing improved mechanical properties as compared to the pure EPDM matrix. The results have been discussed using the Guth model. The main focus of the study was on the electrical behavior of the nanocomposites, in view of possible sensor applications. A linear relation has been found between conductivity and deformations up to 10% strain, which means that such materials could be used for applications such as strain or pressure sensors. Cyclic experiments were conducted to establish whether the linear relation was reversible, which is an important requirement for sensor materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carmona, F, Canet, R, Delhase, P, J. Appl. Phys. 1987, 61, 2550.Google Scholar
2. Zallen, R, The Physics of Amorphous Solids, Wiley, New York, 1998.Google Scholar
3. Carmona, F, Mouney, C, J. Mater. Sci. 1992, 27, 1322.Google Scholar
4. Luo, Y, Wang, G, Zhang, B, Zhang, Z, Eur. Polym. J. 1998, 34, 1053.Google Scholar
5. Marquez, A, Uribe, J, Cruz, R, J. Appl. Polym. Sci. 1997, 66, 2221.Google Scholar
6. Chen, SG, Hu, JW, Zhang, MQ, Li, MW, Rong, MZ, Carbon. 2004, 42, 645.Google Scholar
7. Hu, JW, Chen, SG, Zhang, MQ, Li, MW, Rong, MZ, Mater. Lett. 2004, 58, 3606.Google Scholar
8. Chen, SG, Hu, JW, Zhang, MQ, Rong, MZ, Zheng, Q, Sens. Actuat. B: Chem. 2006, 113, 361.Google Scholar
9. Busfield, JJC, Thomas, AG, Yamaguchi, K, J. Polym. Sci. Polym. Phys, 2004, 42, 2161.Google Scholar
10. Knite, M, Teteris, V, Kiploka, A, Kaupuzs, J, Sens. Actuators A: Phys. 2004, 110, 142.Google Scholar
11. Aneli, JN, Zaikov, GE, Khananashvili, IM, J. Appl. Polym. Sci. 1999, 74, 601.Google Scholar
12. Flandin, L, Chang, A, Nazarenko, S, Hiltner, A, Baer, E, J. Appl. Polym. Sci. 2000, 76, 894.Google Scholar
13. Flandin, L, Bréchet, Y, Cavaillé, J-Y, Compos. Sci. Tech. 2001, 61, 895.Google Scholar
14. Flandin, L, Hiltner, A, Baer, E, Polymer. 2001, 42, 827.Google Scholar
15. Yamaguchi, K, Busfield, JJC, Thomas, AG, J. Polym. Sci. B. Polym. Phys. 2003, 41, 2079.Google Scholar
16. Busfield, JJC, Thomas, AG, Yamaguchi, K, J. Polym. Sci. B. Polym. Phys, 2004, 43, 1649.Google Scholar
17. Knite, M, Teteris, V, Kiploka, A, Mater. Sci. Eng. C 2003, 23, 787.Google Scholar
18. Knite, M, Teteris, V, Kiploka, A, Klemenoks, I, Adv. Eng. Mater. 2004, 6, 742.Google Scholar
19. Knite, M, Tupureina, V, Dzene, A, Teteris, V, Kiploka, A, Zavickis, J, Chem. Tech. 2005, 2, 5.Google Scholar
20. Zhang, R., Baxendale, M, Peijs, T, Phy. Rev. B, 2007, 76, 19, 195433.Google Scholar
21. Deng, H, Zhang, R, Bilotti, E, Loos, J, Peijs, T, J. Appl. Polymer Sci., 2008, accepted.Google Scholar
22. Inam, F, Peijs, T, Advanced Composite Letters, 2006, 15, 1, 713.Google Scholar
23. Inam, F, Peijs, T, J. Nanostructured Polymers and Nanocomposites, 2006, 2, 3, 8795.Google Scholar
24. Zhang, R, Dowden, A, Deng, H, Baxendale, M, Peijs, T, Compos. Sci. Technol., 2008, accepted.Google Scholar
25. Loos, J, Alexeev, A, Grossiord, N, Koning, CO, Regev, O, Ultramicroscopy 2005, 104, 160.Google Scholar
26. Kim, Y, Hayashi, T, Endo, M, Gotoh, Y, Wada, N, et al., Scripta Materialia, 2006, 54, 1, 31.Google Scholar
27. Guth, E, J. Appl. Phys. 1944, 16, 20.Google Scholar
28. Munson-McGee, SH, Phys. Rev. B 1991, 43, 3331.Google Scholar
29. Skakalova, V, et al., J. Phys. Chem. B Cond. Mat. Mat. Surf. Interf. Biophys. 2005, 109, 7174.Google Scholar
30. Kilbride, BE, Coleman, JN, et al., J. Appl. Phys. 2002, 92, 4024.Google Scholar
31. Wang, X, Chung, DDL, Smart Mater. Struct. 1995, 4, 363.Google Scholar
32. Kost, J, Narkis, M, Foux, A, J. Appl. Polym. Sci. 1984, 29, 3937.Google Scholar