Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:18:19.514Z Has data issue: false hasContentIssue false

Multifunctional Ceramic Materials–Review and Projections

Published online by Cambridge University Press:  21 February 2011

John D. Mackenzie*
Affiliation:
University of California, Department of Materials Science and Engineering, Los Angeles, CA 90024-1595
Get access

Abstract

Multifunctional engineering systems made up of different material components each providing primarily a single function are well known. Frequently, even for a monofunctional application, the material component must already have an optimum set of secondary properties to fulfill that function. It would be desirable to have multifunctional material components. In this paper some known multifunctional ceramic materials, mainly crystalline and glassy oxide systems, are reviewed. These are conveniently divided into molecular, ultrastructural and integrated materials systems. Projections are made regarding the future developments of multifunctional ceramics as well as nanocomposites with both inorganic and organic components based on the sol-gel technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buckley, A., Calundann, G.W., East, J.A., Proc. SPIE, 878, 94 (1988).Google Scholar
2. Weyl, W.A., Coloured Glasses, (The Society of Glass Technology, Sheffield, England, 1950), pp. 440452.Google Scholar
3. Hill, C.G.A., Chem. in Brit. Sept. 723 (1983).Google Scholar
4. Momoda, L.A., Barrie, J.D., Dunn, B., Mat. Res. Bull. 24, 859 (1989).Google Scholar
5. Reisfeld, R., Jorgensen, C.K., Lasers and Excited States of Rare Earths (Springer- Verlag, Berlin, 1977).Google Scholar
6. Reisfeld, R., in Halide Glasses for Infrared Fiberoptics, edited by Almeida, R.M. (Martinus Nijhoff Publishers, Boston, 1987), pp. 237251.Google Scholar
7. Dunn, B., Farrington, G.C. and Thomas, J.O., MRS Bull. XIV, 22 (1989).Google Scholar
8. Aka, G. and Collongues, R., to be published.Google Scholar
9. Rakuljic, G.A., Yariv, A., Neurgaonkar, R., Opt. Eng. 25, 1212 (1986).Google Scholar
10. Yariv, A., Yeh, P., Optical Waves in Crystals (Wiley & Sons, New York, 1984), p. 338.Google Scholar
11. Xu, Yuhan, to be published.Google Scholar
12. Chen, C.J.. Xu, Yuhan. Xu, R., Mackenzie, J.D., Proc. 1st Int. Ceramic Sci.6 and Tech. Congress, Anaheim, CA, October 31-November 3, 1989 (in press).Google Scholar
13. Saburi, O., J. Phys. Soc. Japan 14. 1159 (1959).Google Scholar
14. Okazaki, K., Ceramic Engineering for Dielectrics (Gakkensha Co., Ltd., Tokyo, 1969), p. 378.Google Scholar
15. Goodman, G., J. Am. Ceram. Soc. 46, 48 (1963).Google Scholar
16. Sasaki, Y., Ohmori, Y., Appl. Phys. Lett. 39, 468 (1981).Google Scholar
17. Osterberg, U., Margulis, W., Opt. Lett. 11, 516 (1986).Google Scholar
18. Stolen, R.H. and Tom, H.W. K., Opt. Lett. 12. 585 (1987).Google Scholar
19. Schmid, H., Rieder, H., Ascher, E., Solid State Comm. 3, 327 (1965).Google Scholar
20. Deverin, J.A., Ferroelectrics 19, 9 (1978).Google Scholar
21. Mackenzie, J.D., Ulrich, D.R., Ultrastructure Processing of Advanced Ceramics (Wiley & Sons, New York 1988).Google Scholar
22. Araujo, R., in Treatise on Materials Science and Technology, Vol.12, edited by Tomozawa, M. and Doremus, R.H. (Academic Press, New York 1977) pp. 91155.Google Scholar
23. Jain, R.K., Lind, R.C., J. Opt. Soc. Am. 73, 647 (1983).Google Scholar
24. Yao, S.S., et al, Appl. Phys. Lett. 46, 801 (1985).Google Scholar
25. Simmons, J.H., Clausen, E.M. Jr., Potter, B.G. Jr., in Ultrastructure Processing ot Advanced Ceramics, edited by Mackenzie, J.D. and Ulrich, D.R. (Wiley & Sons, New York 1988) pp. 661669.Google Scholar
26. Ooka, K., Dunn, B., Mackenzie, J.D., J. Non-Cryst. Solids 12, 1 (1973).Google Scholar
27. Pope, E.J. A., Mackenzie, J.D., J. Mater. Res. 4. 1018 (1989).Google Scholar
28. Pope, E.J.A., Mackenzie, J.D., MRS Bull. XII, 29 (1987).Google Scholar
29. Greenbergg, C.B., Singleton, D.E., U.S. Patent No. 4,768,865 (September 6, 1988).Google Scholar
30. Baucke, F.G.K. and Duffy, J.A., Chem. in Brit. July, 643 (1985).Google Scholar
31. Greenberg, C.B., Singleton, D.E., Solar Energy Mat. 16, 501 (1987).Google Scholar
32. Makita, K., Central Glass Co., ltd., Japan, to be published.Google Scholar
33. Whittenham, M.S., Jacobson, A.J., Intercalation Chemistry (Acad. Press, New York 1982).Google Scholar
34. Schmidt, H. in Better Ceramics Through Chemistry. Edited by Brinker, C.J., Clark, D.E., Ulrich, D.R. (North-Holland, New York 1984) pp. 327336.Google Scholar