Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:42:41.037Z Has data issue: false hasContentIssue false

Movpe Strip-Like Self-Organization of InAs Grown on InP Vicinal Surfaces

Published online by Cambridge University Press:  10 February 2011

Laurent Auvray
Affiliation:
LMI UCB Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Véronique Soulière
Affiliation:
LMI UCB Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Hervé Dumont
Affiliation:
LMI UCB Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Jacques Dazord
Affiliation:
LMI UCB Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Yves Monteil
Affiliation:
LMI UCB Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Jean Bouix
Affiliation:
LMI UCB Lyon 1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
Get access

Abstract

We have investigated the influence of MOVPE growth parameters on the surface morphology of InAs nanostructures grown on 0.2° misoriented (001)InP substrates. Thin layers of nominal thickness of about 3 and 6 ML were deposited at 500°C with V/Ill flux ratios ranging from 50 to 240. The samples were cool down from 500 to 350°C during 6 minutes under either arsine or phophine atmosphere. The influence of this step has been found to greatly determine the surface morphology of the nanostructures observed by atomic force microscopy. Dots self-aligned along the steps and forming a non continuous strip, regularly spaced every 3-4 terraces have been obtained. The morphology of the strips can be varied with the growth conditions (V/III flux ratio). In this work, we will propose a mechanism for the formation of the strips observed during the cooling under phosphine atmosphere taking into account an As » P exchange.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Stranski, I., Krastanov, L., Akad. Wiss. Litt. Mainz Math. Natur Kl 1146, 797 (1939).Google Scholar
2 Walther, C., Hoerstel, W., Niehus, N., Erxmeyer, J., Masselink, W.T., J. Crystal Growth 209, 572 (2000).Google Scholar
3 Dumont, H., Auvray, L., Dazord, J., Monteil, Y., Bouix, J., Ougazzaden, A., App. Surf. Sci. 150, (1999) 161.Google Scholar
4 Shchukin, V.A., Lexlenstov, N., Kopev, P.S., and Bimberg, D., Phys Rev. Lett. 75, 2968 (1995).Google Scholar
5 Kitamura, M., Nishioka, M., Oshinowo, J., and Arakawa, Y., Appl. Phys. Lett. 66, 3663 (1995).Google Scholar
6 Leonard, D., Pond, K., and Petroff, P.M., Phys. Rev. B 50, 11687 (1994).Google Scholar
7 Ikoma, N., and Ohkouchi, S., Jap. J. Appl. Phys. 34, L724 (1995).Google Scholar
8 Jönsson, J., Reinhardt, F., Zorn, M., Ploska, K., Richter, W., and Rumberg, J., Appl. Phys. Lett. 64, 1998 (1994).Google Scholar
9 Rasnik, I., Brasil, M.J.S., Cerdeira, F., Mendonça, C.A., Cotta, M.A., J. Appl. Phys. 87, 1165 (2000).Google Scholar