Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:35:51.923Z Has data issue: false hasContentIssue false

MÖssbauer Effect Study of the Absence of Fe Magnetism in Superconducting Sc2Fe3Si5 and Th7Fe3*

Published online by Cambridge University Press:  15 February 2011

J. D. Cashion
Affiliation:
Argonne National Laboratory, Solid State Science Division, Argonne, Illinois 60439
G. K. Shenoy
Affiliation:
Argonne National Laboratory, Solid State Science Division, Argonne, Illinois 60439
P. J. Viccaro
Affiliation:
Argonne National Laboratory, Solid State Science Division, Argonne, Illinois 60439
Get access

Abstract

There are only a few Fe-based compounds which are superconducting since the depairing of Cooper pairs is unavoidable in the presence of an Fe moment. In Sc2Fe3Si5 and Th7Fe3, Mössbauer measurements on 57Fe show that there is no magnetism at the Fe site in either compound. The isomer shift values indicate the reason behind this identical magnetic behavior to be quite different in its electronic origin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

On leave from the Department of Physics, Monash University, Victoria, Australia.

*

Work supported by the U.S. Department of Energy.

References

REFERENCES

1. Abrikosov, A. A. and Gor'kov, L. P., Sov. Phys. JETP 12, 1243 (1961).Google Scholar
2. Dunlap, B. D., Shenoy, G. K., Fradin, F. Y., Barnet, C. D. and Kimball, C. W., J. Mag. Magn. Materials 13, 319 (1979).CrossRefGoogle Scholar
3. Matthias, B. T., Compton, V. B. and Corenzwit, E., J. Phys. Chem. Solids 19, 130 (1961).CrossRefGoogle Scholar
4. Chandrasekhar, B. S. and Hulm, J. K., J. Phys. Chem. Solids 7, 259 (1958).CrossRefGoogle Scholar
5. Havinga, E. E., Damsma, H. and Kanis, J. M., J. Less-Common Metals 27, 281 (1972).CrossRefGoogle Scholar
6. Braun, Hans F., Phys. Letters 75A, 386 (1980).CrossRefGoogle Scholar
7. Hnle, W., von Schnering, H. G., A. Lipka and K. Yvon, J. Less-Common Metals 71, 135 (1980).CrossRefGoogle Scholar
8. Potel, M., Chevrel, R., Sergent, M., Decroux, M., and Fischer, Ø., Acad, C. R.. Sci., Ser. C. 288, 429 (1979).Google Scholar
9. Cashion, J. D., Shenoy, G. K., Niarchos, D., Viccaro, P. J. and Falco, Charles M., Phys. Letters 79A, 454 (1980).CrossRefGoogle Scholar
10. Kimball, C. W., Phillips, W. C., Nevitt, M. V. and Preston, R. S., Phys. Rev. 146, 375 (1966).CrossRefGoogle Scholar
11. Mielczarek, E. V. and Winfree, W. P., Phys. Rev. Bll, 1026 (1975).CrossRefGoogle Scholar
12. Cashion, J. D., Shenoy, G. K., Niarchos, D., Viccaro, P. J., Aldred, A. T. and Falco, Charles M., Proc. 14th Annual Conference on Magnetism and Magnetic Materials Dallas, Texas November 11–14, 1980.Google Scholar
13. Vandenberg, J. M. and Matthias, B. T., Science 198, 194 (1977).CrossRefGoogle Scholar
14. Structure Reports, ed. Pearson, W. B. (Oosthoek, Utrecht) Vol. 20, 132 (1956).Google Scholar