Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:08:00.543Z Has data issue: false hasContentIssue false

The Mössbauer Effect and Some Applications in Materials Research*

Published online by Cambridge University Press:  15 February 2011

G. K. Shenoy*
Affiliation:
Solid State Science DivisionArgonne National Laboratory, Argonne, IL 60439
Get access

Abstract

A brief introduction to the Mössbauer effect is presented. The hyperfine interactions associated with the electric monopole, magnetic dipole and electric quadrupole moments of the nuclear states involved in the Mössbauer transition are described. Their use in materials research is illustrated through examples dealing with phase analysis, binary solubility, defect interaction and surface properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U. S. Department of Energy.

References

REFERENCES

1. For example, Wertheim, G. K., Mössbauer Effect: Principles and Applications (Academic Press, New York, 1964).Google Scholar
2. Gonser, U., Mössbauer Spectroscopy (Springer-Verlag, Berlin and New York, 1976).Google Scholar
3. Cohen, R. L., Applications of Mössbauer Spectroscopy, Vol. 1 and 2, (Academic Press, New York, 1976 and 1981).Google Scholar
4. Stevens, J. G. and Shenoy, G. K., Chemical Applications of Mössbauer Spectroscopy, Advances in Chemistry Series (American Chemical Society, Washington, D.C., 1981).Google Scholar
5. See for example, Shenoy, G. K. and Wagner, F. E., Mössbauer Isomer Shifts (North-Holland Publ., Amsterdam, 1978).Google Scholar
6. Freeman, A. J. and Frankel, R. B., Hyperfine Interactions (Academic Press, New York, 1967).Google Scholar
7. Wickman, H. H. in: Mössbauer Effect Methodology, Vol. 2, Gruverman, I. J. ed. (Plenum Press, New York, 1966), p. 39.CrossRefGoogle Scholar
8. Cohen, M. H. and Reif, F., Solid State Phys. 5, 321 (1957).Google Scholar
9. Sandrock, G. D. (private communication, 1978).Google Scholar
10. Shäfer, W., Lebsanft, E. and Bläsius, A., Z. Phys. Chem. N.F. 115, 201 (1979).Google Scholar
11. Swartzendrauber, L. J., Bennett, L. H. and Watson, R. E., J. Phys. F. Metal Physics 6, L331 (1976).CrossRefGoogle Scholar
12. Nasu, S., Gonser, V. and Preston, R. S., J. Physique 41, C1–385 (1980).Google Scholar
13. Sawicka, B. D., J. Physique 41, C1429 (1980).Google Scholar
14. Darken, L. S. and Gurry, R. W., Physical Chemistry of Metals (McGraw-Hill, New York, 1973), p. 87.Google Scholar
15. Miedema, A. R., J. Less-Common Met. 32, 117 (1973).Google Scholar
15a Miedema, A. R., Boom, R. and Baer, R. R. de, J. Less-Common Met. 41, 283, (1975), and 46, 67 (1976).CrossRefGoogle Scholar
16. Vogl, G., Hyperfine Int. 2, 151 (1976), and references cited therein.Google Scholar
17. Pirich, Ron G., Burr, G. R., Shenoy, G. K., Dunlap, B. D., Suits, B. and Phillips, J. D., Phys. Rev. Letters 38, 1142 (1977).Google Scholar
18. Flinn, P. A. and O'Connell, T., U.S. Atomic Energy Commission Rept. WASH–1220 (1973).Google Scholar
19. Tricker, M. J., in Ref. 4, and G. Longworth in this volume.Google Scholar
20. Shenoy, G. K., Niarchos, D., Viccaro, P. J., Dunlap, B. D., Aldred, A. T. and Sandrock, G. D., J. Less-Common Metals 73, 171 (1980);Google Scholar
20a Blässius, A. and Gonser, U., Appl. Phys. 22, 331 (1980).Google Scholar