Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:27:29.367Z Has data issue: false hasContentIssue false

Morphology-Controlled Synthesis of Nanostructured Silicon Carbide

Published online by Cambridge University Press:  15 March 2011

Xiang-Yun Guo
Affiliation:
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China Email: [email protected]
Guo-Qiang Jin
Affiliation:
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Ya-Juan Hao
Affiliation:
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
Get access

Abstract

Phenolic resin and tetraethoxysilane were used to prepare a binary carbonaceous silicon xerogel, the precursor of silicon carbide (SiC). By employing different additives in the sol-gel process, a series of xerogel precursors with differently chemical composition were obtained. Heating these xerogels to 1250°C, nanostructured β-SiC with various morphologies including nanowires, nanofibers, nanoparticles and mesoporous SiC were produced via carbothermal reduction. The preparation method of the xerogels was presented and the influences of different additives on the sol-gel process and the SiC formation were discussed in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fissel, A., Schroter, B., and Richter, W., Appl. Phys. Lett. 66, 3182 (1995).Google Scholar
2. Zhou, Y. C., and Xia, F., J. Am. Cream. Soc. 2, 447(1991).Google Scholar
3. Pan, Z. W., Lai, H. L., Au, Frederick C. K., Duan, X. F., Zhou, W. Y., Shi, W. S., Wang, N., Lee, C. S., Wong, N. B., Lee, S. T. and Xie, S. S., Adv. Mater. 12, 1186 (2000).Google Scholar
4. Mimura, H., Matsumoto, T. and Kanemitsu, Y., Appl. Phys. Lett. 65, 3350 (1994).Google Scholar
5. Mynbaeva, M., Saddow, S. E., Melnychuk, G., Nikitina, I., Scheglov, M., Sitnikova, A., Kuznetsov, N., Mynbaev, K. and Dmitriev, V., Appl. Phys. Lett. 78, 117 (2001).Google Scholar
6. Lee, Y. J., Choi, D. J., Park, J. Y. and Hong, G. W., J. Mater. Sci., 35, 4519 (2000).Google Scholar
7. Bao, X., Nangrejo, M. R., Edirisinghe, M. j., J. Mater. Sci., 35, 4365 (2000).Google Scholar
8. Ledoux, M. J., Hantzer, S., Huu, C. P., Guille, J. and Desaneaux, M. P., J. Catal. 114, 176 (1988).Google Scholar
9. Meng, G. W., Cui, Z., Zhang, L. D. and Phillipp, F., J. Crystal Growth, 209, 801 (2000).Google Scholar
10. Jin, G. Q., Liang, P. and Guo, X. Y., J. Mater. Sci. Lett., 22, 767(2003).Google Scholar
11. Li, X. K., Liu, L., Zhang, Y. Z., Shen, S. D., Ge, S. and Ling, L. C., carbon, 39, 159(2001).Google Scholar
12. Jin, G. Q. and Guo, X. Y., Microporous and Mesoporous Mater., 60, 207(2003).Google Scholar
13. Guo, X. Y. and Jin, G. Q., J. Mater. Sci., submitted.Google Scholar
14. Moene, R., Tijsen, P. A. M., Makkee, M. and Mouljin, J. A., Appl. Catal. A, 184, 127(1999).Google Scholar
15. Silva, P. C. and Figueiredo, J. L., Mater. Chem. Phys. 72, 326(2001).Google Scholar