Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:57:33.086Z Has data issue: false hasContentIssue false

Morphology of Thin Films

Published online by Cambridge University Press:  21 February 2011

Pawel Keblinski
Affiliation:
Department of Physics and Center for Materials Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802
Amos Maritan
Affiliation:
Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, Padova 35131 Italy
Russell Messier
Affiliation:
Department of Engineering Science and Mechanics, 265 Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Flavio Toigo
Affiliation:
Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, Padova 35131 Italy
Jayanth R. Banavar
Affiliation:
Department of Physics and Center for Materials Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802
Get access

Abstract

We report the results of a combined experimental and theoretical study of thin film growth. The theoretical approach is able to capture nonlocal shadowing effects, allows for an arbitrary topology of the growing interface, provides information on the density in the film interior, incorporates surface tension in a natural manner and enables a unified study of diverse growth phenomena ranging from diffusion-limited aggregation to ballistic aggregation. The theoretical results are found to have many of the features observed in our experiments on physically vapor deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Family, F. and Vicsek, T., Eds. Dynamics of Fractal Surfaces, (World Scientific, 1991).Google Scholar
2. For a discussion of nonlocal growth processes, see e.g.; Bales, G. S., Bruinsma, R., Eklund, E. A., Karunasiri, R. P. U., Rudnick, J. and Zangwill, A., Science 249, 264 (1990).Google Scholar
3. Movchan, B. A. and Demchishin, A. V., Phys. Met. Mettallogy. USSR 28, 83 (1969).Google Scholar
4. Gilbert, L. R., Messier, R. and Roy, R., Thin Solid Films 54, 149 (1978); andGoogle Scholar
Messier, R., Krishnaswamy, S. V., Gilbert, L. R. and Swab, P., J. Appl. Phys. 51, 1611 (1980).Google Scholar
5. Messier, R. and Yehoda, J. E., J. Appl. Phys. 58, 3739 (1985).Google Scholar
6. Messier, R., J. Vac. Sci. Technol. A4, 490 (1986).Google Scholar
7. Muller, K. H., Surf. Sci. Lett. 184, L375 (1987).Google Scholar
8. Bartholomeusz, J., Muller, K. H. and Jacobson, M. R., Proc. SPIE 821, 2 (1987).Google Scholar
9. Yehoda, J. E., Yang, B., Vedam, K. and Messier, R., J. Vac. Sci. Tech. A6, 1631 (1988).Google Scholar
10. Meakin, P., CRC Crit. Rev. Solid State Sci. 13, 143 (1987);Google Scholar
Tang, C. and Liang, S., Phys. Rev. Lett. 71, 2769 (1993).Google Scholar
11. Gilmer, G. H. and Grabow, M., Proc. SPIE 821, 56 (1987).Google Scholar
12. Kardar, M., Parisi, G. and Zhang, Y. C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
13. Mazor, A., Srolovitz, D. J., Hagan, P. S. and Bukiet, B. G., Phys. Rev. Lett. 66, 3156 (1991).Google Scholar
14. Hohenberg, P. C. and Halperin, B. I., Rev. Mod. Phys. 49, 435 (1977).Google Scholar
15. Witten, T. A. and Sander, L. M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
16. For a study of DLA type growth within the framework of our model see Keblinski, P., Maritan, Amos, Toigo, Flavio and Banavar, J. R., Phys. Rev. E 49, R4795 (1994).Google Scholar