Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:25:28.323Z Has data issue: false hasContentIssue false

Morphology Dependence of the Optical Properties of Dalm Related Materials

Published online by Cambridge University Press:  10 February 2011

K. B. Wagner-Brown
Affiliation:
Conceptual MindWorks Inc., San Antonio,TX 78228
K. F. Ferris
Affiliation:
Pacific Northwest National Laboratory, Materials and Chemical Sciences Department, Richland, WA 99352
J. L. Kiel
Affiliation:
Air Force Research Laboratory, Human Effectiveness Directorate, Brooks AFB, San Antonio, TX 78235.
R. A. Albanese
Affiliation:
Air Force Research Laboratory, Human Effectiveness Directorate, Brooks AFB, San Antonio, TX 78235.
Get access

Abstract

Diazoluminomelanin (DALM) is an electroluminescent polymer which has shown significant optical activity in response to perturbing fields. The current model for this process features optical excitation of a polymer backbone containing conducting conjugation, with subsequent energy transfer to a luminescent group. In this paper we have performed electronic structure calculations using the AM1 Hamiltonian with configuration interaction to estimate the electronic properties of two potential models for the DALM backbone. Contrary to the conventional picture of conjugation, the phenyl groups in the DALM backbone show significant twist angles (42° –55°) depending on substitutional group, resulting in localized electronic excitations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kiel, J., O'Brien, G., Dillon, J. and Wright, J., Free Rad. Res. Comms. 8, 115 (1990).10.3109/10715769009087982Google Scholar
2. Bruno, J. and Kiel, J., in Electricity and Magnetism in Biology and Medicine, Ed. Blank, M., San Francisco Press, San Francisco, 1993.Google Scholar
3. Bruno, J. and Kiel, J., Bioelectromags. 15, 315 (1994).Google Scholar
4. Kiel, J., Gabriel, C., Simmons, D., Erwin, D. and Grant, E., Proc. IEEE Eng. Med. Biol. Soc. 12, 1689 (1990).Google Scholar
5. Kiel, J., Parker, J., Alls, J. and Weber, R., Proc. IEEE Eng. Med. Biol. Soc. 13, 1689 (1991).Google Scholar
6. Kiel, J. L., Bruno, J. G. and Hurt, W. D., in Radiofrequency Standards, Ed. Klaunberg, B. J. et al., Plenum Press, New York, 1994.Google Scholar
7. Wright, R., unpublished work, Southeastern Oklahoma State University.Google Scholar
8. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., and Stewart, J.J., J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
9. MOPAC 93.00, Stewart, J.J.P., Fujitsu Limited, Tokyo, Japan (1993).Google Scholar
10. Kurtz, H.A., Stewart, J.J.P., and Dieter, K.M., J. Comp. Chem. 11, 82 (1990).Google Scholar
11. Shanno, D.F., J. of Optimization Theory and Applications 46, 87 (1985).Google Scholar
12. Heeger, A. J. and Long, J., Jr., Optics & Photonics News 8, 24 (1996).Google Scholar