Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:59:56.292Z Has data issue: false hasContentIssue false

Morphology Control Of The Electrochromic Effect In Tungsten Oxide Thin Films

Published online by Cambridge University Press:  21 February 2011

H. S. Witham
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802.
P. Chindaudom
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802.
R. Messier
Affiliation:
Also in Department of Engineering Science and Mechanics
K. Vedam
Affiliation:
Also in Department of Physics
Get access

Abstract

Electrochromic tungsten oxide thin films have been prepared by reactive dc-magnetron sputtering under different deposition conditions. Through the use of scanning electron microscopy, spectroscopic ellipsometry, and electrochromic coloration experiments, the effect of preparation conditions on film morphology and electrochromic properties has been studied. The results of this study are consistent with a previous report which found that tungsten oxide thin films are dominated by a hierarchy of dense columnar regions and less dense void regions. This morphology not only dominates the structure of tungsten oxide thin films but also strongly controls the electrochromic properties. From spectroscopic ellipsometry data and Bruggeman effective medium approximation models presented here, it seems reasonable that a cermet model of absorption can accurately describe the tungsten oxide preparationelectrochromic property relationship.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Faughnan, B. W. and Crandall, R. S., in Display Devices, Vol.40 of Topics in Applied Physics, ed. by Pankove, J. I. (Springer, Berlin, 1980), p. 181.Google Scholar
2. Dautremont-Smith, W, C., Displays 3, 3 (1982); 3, 67 (1982).CrossRefGoogle Scholar
3. Agnihotry, S. A., Saini, K. K., and Chandra, S., Indian J. Pure Appl. Phys. 24, 19 (1986); 24, 34(1986).Google Scholar
4. Oi, T., Ann. Rev. Mater. 14, 195 (1986).Google Scholar
5. Baucke, F. G. K., Schott Information Ed. 1/83 ISSN0586–7665, 11 (1983).Google Scholar
6. Lynam, N. R. and Agrawal, A., in Large-Area Chromogenics: Materials and Devices for Transmittance Control, ed. by Lampert, C. M. and Granqvist, C. G. (SPIE IS4, 1990), p. 46.Google Scholar
7. Svensson, J. S. E. M. and Granqvist, C. G., Proc. SPIE 502, 30 (1984).CrossRefGoogle Scholar
8. Goldner, R. B. and Rauh, R. D., Proc. SPIE 428, 38 (1983).Google Scholar
9. Selkowitz, S. E., Lampert, C. M., in Large-Area Chromogenics: Materials and Devices forTransmittance Control, ed. by Lampert, C. M. and Granqvist, C. G. (SPIE LS4, 1990), p. 22.Google Scholar
10. Giri, A. P., PhD Thesis, The Pennsylvania State University, (1984).Google Scholar
11. Giri, A. P. and Messier, R., MRS Symp. Proc. 24, 221 (1984).Google Scholar
12. Nagai, J., Proc. SPIE 1016, 28 (1988).CrossRefGoogle Scholar
13. Suzuki, T., IEEE Trans Mag. MAG20 (5), 675 (1984).Google Scholar
14. Ross, R. C., Johncock, A. G., and Chan, A. R., J. Non-Cryst. Solids 66, 81 (1984).CrossRefGoogle Scholar
15. Messier, R., J. Vac. Sci. Technol. A4, 496 (1986).Google Scholar
16. Messier, R. and Yehoda, J. E., J. Appl. Phys. 5, 3739 (1985).CrossRefGoogle Scholar
17. Thornton, J. A., Ann. Rev. Mat. Sci. 7, 239 (1977).Google Scholar
18. Messier, R., Giri, A. P., and Roy, R. A., J. Vac. Sci. and Technol. A2 (2), 500 (1984).Google Scholar
19. Roy, R. A. and Messier, R., MRS Symp. Proc. 8, 363 (1985).Google Scholar
20. Yang, B., Walden, B. L., Messier, R. and White, W. B., Proc. SPIE 821, 68 (1987).Google Scholar
21. Deb, S. K., Philos. Mag. 21, 801 (1973).CrossRefGoogle Scholar
22. Schirmer, O. F., Wittwer, V., Baur, G., and Brandt, G., J. Electrochem. Soc. 12A(5), 749 (1977).Google Scholar
23. Green, M., Thin Solid Films 50, 145 (1978).Google Scholar
24. Chindaudom, P., PhD Thesis, The Pennsylvania State University, (1991).Google Scholar
25. Aspenes, D. E., Proc. SPIE 276, 188 (1981).Google Scholar
26. Vedam, K. and Kim, S. Y., Appl. Opt. 28, 2691 (1989).Google Scholar
27. Bruggeman, D. A., Ann. Phys. (Leip.) 24, 636 (1935).CrossRefGoogle Scholar
28. Craig, S. and Harding, G. L., J. Vac. Sci. Technol. 19 (2), 205 (1981).Google Scholar
29. Blanco, J. R., McMarr, P. J., Ychoda, J. E., Vedam, K., and Messier, R., J. Vac. Sci. Technol. A 4 (3), 577 (1986).Google Scholar
30. Yehoda, J. E., Yang, B., Vedam, K., and Messier, R., J. Vac. Sci. Technol. A6 (3), 1631 (1988).Google Scholar
31. Masamitsu, I., Masaru, H., and Soichi, N., J. Vac. Sci. Technol. B9 (1), 149 (1991).Google Scholar
32. Messier, R. and Ross, R. C., J. Appl. Phys. 53(9), 6220 (1982).Google Scholar
33. Blanco, J. R., Messier, R., Vedam, K., and McMarr, P. J., MRS Symp. Proc.,38 301 (1985).Google Scholar
34. Owen, J. F., Teegarden, K. J., and Shanks, H. R., Phys. Rev. B18, 3827 (1978).CrossRefGoogle Scholar
35. Shanks, H. R., Lidles, P. H., and Danielson, G. C., in Advances in Chemistry, edited by Gould, R. F. (American Chem. Soc. 39, 1963) p. 237.Google Scholar
36. Sienko, M. J. and Truong, T. B. N., J. Amer. Chem. Soc. 83 3939 (1961).Google Scholar
37. Webman, I. and Jortner, J., Phys. Rev. B,13 713 (1976).Google Scholar
38. Sichel, E. K., Gittleman, J. I., and Zelez, J., Appl. Phys. Lett. 31,109 (1977).Google Scholar
39. Ashrit, P. V., Bader, G., Girouard, F. E., and Truong, V. V., Proc. SPIE 1149, 7 (1989).Google Scholar