No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Self-organized Ag nanodots were deposited on Si(100) by a pulsed laser deposition method. A compact apparatus was specially developed for this purpose with Nd:YAG-laser. Factors dominating size and morphology of the nanodots were examined by systematically varying species and pressure of the gas in the deposition chamber, deposition time, and the target –substrate distance (TSD). Pulse frequency (10Hz), pulse width (8ns) and laser wavelength (266nm) were kept constant. The dot size increased with pressure in the range between 0.005Pa to 1Pa, in Ar gas. At pressures as high as 100Pa, dot size decreased again with slightly different morphology. Increasing deposition time from 3, 5, to 10min brought about an increase in the average dot size from 5±2.1nm, 9±2.4nm, 10±3.0nm, respectively, under the constant Ar pressure, 100Pa. It is particularly to be noted that decreasing TSD from 100mm to 50mm brought about an increase in the dot size from 5±2.1nm to 9±3.3nm at Ar pressure, 100Pa, and deposition time, 3min. We discuss factors making self-organized Ag nanodots, and proposed key values to evaluate homogenize of dots assembly.