Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T17:16:59.251Z Has data issue: false hasContentIssue false

Morphology Control of LiMnPO4 Cathodes by a Careful Choice of Additives

Published online by Cambridge University Press:  11 July 2013

Hung-Cuong Dinh
Affiliation:
Division of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Sun-il Mho
Affiliation:
Division of Energy Systems Research, Ajou University, Suwon 443-749, Korea
Yongku Kang
Affiliation:
Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea
In-Hyeong Yeo
Affiliation:
Department of Chemistry, Dongguk University, Seoul 100-715, Korea
Get access

Abstract

LiMnPO4 cathode materials of various sizes and shapes are synthesized by a hydrothermal method. In order to control the morphology of the LiMnPO4 particles, a nonionic surfactant or a cationic surfactant has employed as a key additive to the reactant solution. LiMnPO4 nanoparticles of grain-shape and rod-shape can be made with sizes between about 100 and 300 nm by adding a nonionic large polymer surfactant. Micrometer-sized LiMnPO4 particles of cuboid shape result from the reaction with a cationic surfactant. LiMnPO4 spheres of about 20 μm diameter are produced when no surfactant is added. The cathode composed of nanocrystalline (about 100 nm size) LiMnPO4 exhibited the best performance with the specific capacity of 153 mAhg-1 for the first battery cycle.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goodenough, J.B., J.Solid State Electrochem. 16, 2019 (2012).CrossRefGoogle Scholar
Armand, M., Tarascon, J.-M., Nature 451, 652 (2008).CrossRefGoogle Scholar
Aravindan, V., Gnanaraj, J., Lee, Y.-S. and Madhavi, S., J. Mater. Chem. A 1, 3518 (2013).CrossRefGoogle Scholar
Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B., J. Electrochem. Soc. 144, 1188 (1997).CrossRefGoogle Scholar
Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N., and Kanno, R., J. Electrochem. Soc. 151, A1352 (2004).CrossRefGoogle Scholar
Fisher, C. A. J., Prieto, V. M. H., and Islam, M. S., Chem. Mater. 20, 5907 (2008).CrossRefGoogle Scholar
Lee, J.-W., Park, M.-S., Anass, B., Park, J.-H., Paik, M.-S. and Doo, S.-G., Electrochimca Acta 55, 4162 (2010).CrossRefGoogle Scholar
Malik, R., Burch, D., Bazant, M., and Ceder, G., Nano Lett. 10, 4123 (2010).CrossRefGoogle Scholar
Wang, D., Buqa, H., Crouzet, M., Deghenghi, G., Drezen, T., Exnar, I., Kwon, N.-H., Miners, J.H., Poletto, L., and Grätzel, M., J. Power Sources 189, 624 (2009).CrossRefGoogle Scholar
Dinh, H.-C., Mho, S.-i., and Yeo, I.-H., Electroanal. 23, 2079 (2011).CrossRefGoogle Scholar
Dinh, H.-C., Mho, S.-i., Kang, Y., and Yeo, I. -H., J. Power Sources, 2013 (in press).Google Scholar
Rangappa, D., Sone, K., Ichihara, M., Kudo, T., and Honma, I., Chem. Commun. 46, 7548 (2010).CrossRefGoogle Scholar
Devaraju, M. K. and Honma, I., Adv. Energy Mater. 2, 284 (2012).CrossRefGoogle Scholar
Ellis, B., Kan, W. H., Makahnouk, W. R. M., and Nazar, L. F., J. Mater. Chem. 17, 3248 (2007).CrossRefGoogle Scholar
Wang, Y., Song, H., Zhang, H., Liao, L., Liu, N., and Chen, X., J. Mater. Chem. 21, 5576 (2011).CrossRefGoogle Scholar
Vilčáková, J., Moučka, R., Svoboda, P., Ilčíková, M., Kazantseva, N., Hřibová, M., Mičušík, M. and Omastová, M.;, Molecules 17, 13157 (2012).CrossRefGoogle Scholar
Ye, J., Zhang, H., Yang, R., Li, X., and Qi, L., Small. 6, 296 (2010).CrossRefGoogle Scholar
Dokko, K., Koizumi, S., Nakano, H., and Kanamura, K.. J. Mater. Chem. 17, 4803 (2007).CrossRefGoogle Scholar