Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T13:29:28.609Z Has data issue: false hasContentIssue false

Morphology and surface reconstructions of m-plane GaN

Published online by Cambridge University Press:  11 February 2011

C. D. Lee
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
R. M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
J. E. Northrup
Affiliation:
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
L. Lymperakis
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, D-14195 Berlin, Germany
J. Neugebauer
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, D-14195 Berlin, Germany
Get access

Abstract

M-plane GaN(1100) is grown by plasma assisted molecular beam epitaxy on ZnO(1100) substrates. A low-temperature GaN buffer layer is found to be necessary to obtain good structural quality of the films. Well oriented (1100) GaN films are obtained, with a slate like surface morphology. On the GaN(1100) surfaces, reconstructions with symmetry of c(2×2) and approximate “4×5” are found under N- and Ga-rich conditions, respectively. We propose a model for Ga-rich conditions with the “4×5” structure consisting of ≥ 2 monolayers of Ga terminating the GaN surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Smith, A. R., Feenstra, R. M., Greve, D. W., Neugebauer, J., Northrup, J. E., Phys. Rev. Lett. 79, 3934 (1997).Google Scholar
[2] Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M.-S., Skowronski, M., Neugebauer, J., Northrup, J. E., Surf. Sci. 423, 70 (1999).Google Scholar
[3] Bykhovski, A., Gelmont, B., and Shur, M., J. Appl. Phys. 743, 6734 (1993).Google Scholar
[4] Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys Rev. B 56, R10024 (1997).Google Scholar
[5] Waltereit, P., Brandt, O., Ramsteiner, M., Trampert, A., Grahn, H. T., Menniger, J., Reiche, M., Uecker, R., Reiche, P., and Ploog, K. H., Phys. Stat. Sol. (a) 180, 133 (2000).Google Scholar
[6] Chen, C. Q., Gaevski, M. E., Sun, W. H., Kuokstis, E., Zhang, J. P., Fareed, R. S. Q., Wang, H.M., Yang, J. W., Simin, G., Khan, M. A., Maruska, H.-P., Hill, D. W., Chou, M. M. C., and Chai, B., Appl. Phys. Lett. 81, 3194 (2002).Google Scholar
[7] Lee, C. D., Feenstra, R. M., Northrup, J. E., Lymperakis, L., and Neugebauer, J., submitted to Appl. Phys. Lett.Google Scholar
[8] Lee, C. D., Ramachandran, V., Sagar, A., Feenstra, R. M., Greve, D. W., Sarney, W. L., Salamanca-Riba, L., Look, D. C., Bai, S., Choyke, W. J., and Devaty, R. P., J. Electron. Mater. 30, 162 (2001).Google Scholar
[9] Northrup, J. E. and Neugebauer, J. E., Phys. Rev. B 53, R10477 (1996).Google Scholar