Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:30:58.207Z Has data issue: false hasContentIssue false

Morphology and Properties of Tetraleg ZnO Nanostructures Fabricated by Zn-Powder Evaporation without Catalysts at Lower Temperature

Published online by Cambridge University Press:  15 February 2011

Yue Zhang
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
Yunhua Huang
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
Jian He
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
Ying Dai
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
Sen Wang
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
Cheng Zhou
Affiliation:
Department of Materials Physics, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
Get access

Abstract

By simply controlling temperature and atmosphere, tetraleg ZnO nanostructures with different morphologies and sizes have been fabricated respectively through pure zinc powder evaporation without catalysts at temperature of 600∼800 oC. The growth mechanisms of the nanostructures were proposed and discussed. Photoluminescence spectra showed a UV and green emission peaks at room temperature. Field emission measurements revealed that the turn-on field is very low and the emission current density is relative to the morphology and size. Such ZnO nanostructures are likely to be candidates as building blocks for constructing photonic and field emission crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Morales, M. and Lieber, C. M., Science, 279, 20(1988).Google Scholar
[2]Yu, D. P., Bai, Z. G., Wang, J. J., Zou, Y. H., Qian, W., Fu, J. S. and Zhang, H. Z., Phys. Rev. B, 59, R2498(1999).Google Scholar
[3]J. L. Costa-Kramer, Garcia, N., Garcia-Mochales, P., Serena, P. A., Marques, M. I. and Correia, A., Phys. Rev. B, 55, 5416(1997).Google Scholar
[4]Poncharal, P., Wang, Z. L., Ugarte, D. and Heer, W. A. de, Science, 283, 1513(1999).Google Scholar
[5]Binh, V. T. and Purcell, S. T., Appl. Surf. Sci. 111, 157(1997).Google Scholar
[6]Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science, 292, 18971989(2001).Google Scholar
[7]Zhu, Y. W., Zhang, H. Z., Sun, X. C., Feng, S. Q., Xu, J., Zhao, Q., Xiang, B., Wang, R. M. and Yu, D. P., Appl. Phys. Lett. 83, 144146(2003).Google Scholar
[8]Pan, Z. W., Dai, Z. and Wang, Zhong Lin, Science, 291, 19471949(2001).Google Scholar
[9]Dai, Y., Zhang, Y., Li, Q. K. and Nan, C. W., Chem. Phys. Lett. 358, 8386(2002).Google Scholar
[10]Xing, Y. J., Xi, Z.H., Zhang, X.D., Song, J.H., Wang, R.M., Xu, J., Xue, Z.Q. and Yu, D.P., Solid State Communications, 129, 671675(2004).Google Scholar
[11]Gao, P. X. and Wang, Z. L., Appl. Phys. Lett. 84, 28832885(2004).Google Scholar
[12]Kong, X. Y. and Wang, Z. L., Appl. Phys. Lett. 84, 975977(2004).Google Scholar
[13]Kong, X. Y., Ding, Y., Yang, R. S. and Wang, Z. L., Science, 303, 13481351(2004).Google Scholar
[14]Lee, C. J., Lee, T. J., Lyu, S. C., Zhang, Y., Ruh, H. and Lee, H. J., Appl. Phys. Lett. 81, 36483650(2002).Google Scholar
[15]Wang, Y. W., Zhang, L. D., Wang, G. Z., Peng, X. S., Chu, Z. Q. and Liang, C. H., Cryst. Growth, 234, 171175(2002).Google Scholar
[16]Yang, P. D., Yan, H. Q., Mao, S., Richard, R., Justin, J., Richard, S., Nathan, M., Johnny, P., He, R. and Choi, H. J., Adv. Func. Mater. 12, 323331(2002).Google Scholar
[17]Yan, H. Q., He, R. R., Pham, J. and Yang, P. D., Adv. Mater. 15, 402405(2003).Google Scholar
[18]Dai, Y., Zhang, Y., Bai, Y. Q. and Wang, Z. L., Chem. Phys. Lett., 375, 96101(2003).Google Scholar
[19]Dai, Y., Zhang, Y. and Wang, Z. L., Solid State Communications, 126, 629633(2003).Google Scholar
[20]Bagnall, D. M., Chen, Y. F., Shen, M. Y., Zhu, Z. and Yao, T., Cryst. Growth, 185, 605609(1998)Google Scholar
[21]Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A. and Gnade, B. E., Appl. Phys. 79, 79837986(1996).Google Scholar
[22]Huang, M. H., Wu, Y., Feick, H., Tran, N., Weber, E. and Yang, P. D., Adv. Mater. 13, 113116 (2001).Google Scholar