Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:26:59.340Z Has data issue: false hasContentIssue false

Morphology and Electronic Structures of Calcium Phosphate Coated Titanium Dioxide Nanotubes

Published online by Cambridge University Press:  22 June 2011

Lijia Liu
Affiliation:
Department of Chemistry, University of Western Ontario London, ON N6A5B7, Canada
Sun Kim
Affiliation:
Department of Chemistry, University of Western Ontario London, ON N6A5B7, Canada
Jeffrey Chan
Affiliation:
Department of Chemistry, University of Western Ontario London, ON N6A5B7, Canada
Tsun-Kong Sham
Affiliation:
Department of Chemistry, University of Western Ontario London, ON N6A5B7, Canada
Get access

Abstract

Titanium dioxide nanotubes (TiO2-NT) have been synthesized via an electrochemical anodization strategy followed by calcination under different temperatures to form TiO2 nanostructures of anatase and rutile crystal phases. The nanotube-on-Ti structure is further used as a substrate for calcium hydroxyapatite (HAp) coating. The effect of TiO2 morphology and crystal phases (i.e. amorphous, anatase and rutile) on the coating efficiency of HAp has been investigated in comparison with HAp coating on bare Ti metal. The HAp coated TiO2-NT have been studied using X-ray absorption near-edge structure (XANES) at the Ti K- and Ca K-edge. The results show that TiO2 of amorphous and anatase phases are of comparably good performance for HAp crystallization, and both are better than rutile TiO2, while HAp is hardly found on bare Ti. The implications of the findings are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brunette, D. M.; Tengvall, P.; Textor, M.; Thomsen, P., Titanium in Medicine; Berlin: Springer, (2001).Google Scholar
2. Reiner, T.; Gotman, I., J. Mater. Sci. Mater. Med. 21, 515 (2010).Google Scholar
3. Das, K.; Bose, S.; Bandyopadhyay, A., J. Biomed. Mater. Res. A 90A, 225 (2009).Google Scholar
4. Kim, H.-M.; Kokubo, T.; Fujibayashi, S.; Nishiguchi, S.; Nakamura, T., J Biomed. Mater. Res. 52, 553 (2000).Google Scholar
5. Dorozhkin, S. V.; Epple, M., Angew. Chem. Int. Ed. 41, 3130 (2002).Google Scholar
6. Wang, L.; Nancollas, G. H., Chem. Rev. 108, 4628 (2008).Google Scholar
7. Liu, L.; Chan, J.; Sham, T.-K., J. Phy.Chem. C 114, 21353 (2010).Google Scholar
8. Zhou, X. T.; Sham, T. K.; Zhang, W. J.; Chan, C. Y.; Bello, I.; Lee, S. T.; Hofsass, H., J. Appl. Phys. 101, 013710/1 (2007).Google Scholar
9. , A., Kodama, A.; Bauer, S.; Komatsu, A.; Asoh, H.; Ono, S.; Schmuki, P. Acta Biomaterialia 5, 2322 (2009).Google Scholar
10. Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T., J. Biomed. Mater. Res. 24, 721 (1990).Google Scholar
11. Hu, Y. F.; Coulthard, I.; Chevrier, D.; Wright, G.; Igarashi, R.; Sitnikov, A.; Yates, B. W.; Hallin, E. L.; Sham, T. K.; Reininger, R., AIP Conf. Proc. 1234, 343 (2010).Google Scholar
13. Ruiz-Lopez, M. F.; Munoz-Paez, A., J. Phys. Condens. Matter 3, 8981 (1991).Google Scholar
14. Brydson, R.; Sauer, H.; Engel, W.; Thomas, J. M.; Zeitler, E.; Kosugi, N.; Kuroda, H., J. Phys. Condens. Matter 1, 797 (1989).Google Scholar
15. Wu, Z. Y.; Zhang, J.; Ibrahim, K.; Xian, D. C.; Li, G.; Tao, Y.; Hu, T. D.; Bellucci, S.; Marcelli, A.; Zhang, Q. H.; Gao, L.; Chen, Z. Z., Appl. Phys. Lett. 80, 2973 (2002).Google Scholar
16. Eichert, D.; Salome, M.; Banu, M.; Susini, J.; Rey, C., Spectrochimica Acta, B 60B, 850 (2005).Google Scholar