Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:22:33.775Z Has data issue: false hasContentIssue false

Morphology and Electrochemistry of Hydrothermally Prepared LiMnPO4

Published online by Cambridge University Press:  15 March 2011

Jan L. Allen
Affiliation:
US Army Research Laboratory Adelphi, MD 20783, U.S.A.
T. Richard Jow
Affiliation:
US Army Research Laboratory Adelphi, MD 20783, U.S.A.
Jeff Wolfenstine
Affiliation:
US Army Research Laboratory Adelphi, MD 20783, U.S.A.
Get access

Abstract

In this study, we explored the synthesis of LiMnPO4 through hydrothermal methods using urea as the hydroxide ion source. The hydrothermally prepared LiMnPO4 was examined through x, ray diffraction, microscopy, surface area and electrochemical measurements. Small crystallites were formed and significant agglomeration of particles was observed. The effect of additives to control nucleation and growth of the LiMnPO4 is reported. None of the attempted additives led to the desired morphology. At a C/5 discharge rate, a capacity of about 53 mAh/g was observed for a carbon coated sample of hydrothermally prepared LiMnPO4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B., J. Electrochem. Soc., Vol. 144, no. 4, pp.11881194 April 1997.Google Scholar
2. Delacourt, C, Laffont, L, Bouchet, R, Wurm, C, JB, Leriche, Morcrette, M, JM, Tarascon and Masquelier, C., J. Electrochem. Soc., Vol. 152, no. 5, pp. A913–A921, May 2005.Google Scholar
3. Yonemura, M., Yamada, A., Takei, Y, Sonoyama, N. and Kanno, R., J.Electrochem. Soc., Vol. 151, no. 9, pp. A1352–A1356, Sep. 2004.Google Scholar
4. Meethong, N, HYS, Huang, Speakman, SA, WC, Carter, YM, Chiang, Adv. Funct. Mater. Vol. 17, pp. 11151123, 2007.Google Scholar
5. Chen, G., Song, X., and Richardson, T.J., Electrochem. Solid State Lett., Vol. 9, no. 6, pp. A295–A298, June 2006.Google Scholar
6. Allen, J.L., Jow, T.R. and Wolfenstine, J., Chem. Mater. Vol. 19, no. 8, pp.21082111, 2007.Google Scholar
7. Allen, J.L., Jow, T.R. and Wolfenstine, J., J. Solid State Electrochem. Vol. 12, pp.10311033, 2008.Google Scholar
8. Chen, J., Vacchio, M.J., Wang, S., Chernova, N., Zavalij, P.Y. and Whittingham, M.S.W., Solid State Ionics, Vol. 178, pp. 16761693, 2008.Google Scholar
9. Yang, S., Zavalij, P.Y. and Whittingham, M.S.W., Electrochem. Commun. Vol. 3, no. 9, pp. 505508, 2001.Google Scholar
10. Ellis, B., Kan, W.H., Makahnouk, W.R.M., and Nazar, L.F. J. Mater. Chem. Vol. 17, pp. 32483254, 2007.Google Scholar
11. Fang, H., Li, L., and Li, G., Chem. Lett. Vol. 36, no. 3, pp. 436437, 2007.Google Scholar
12. Fisher, C.A.J., Prieto, V.M.H., and Islam, M.S., Chem. Mater. Vol. 20, pp. 59075915, 2008.Google Scholar
13. Fang, H., Pan, Z., Li, L., Yang, Y., Yan, G., Li, G. and Wei, S., Electrochem. Commun., Vol. 10, pp. 10711073, 2008.Google Scholar
14. Kim, T.R., Kim, D.H., Ryu, H.W., Moon, J.H., Lee, J.H., Boo, S. and Kim, J. J., Physics and Chemistry of Solids, Vol. 68, pp. 12031206, 2007.Google Scholar
15. Allen, J.L., Jow, T.R. and Wolfenstine, J., Vol. 159, pp. 13401345, 2007.Google Scholar
16. Drezen, T., Kwon, N. H., Bowen, P., Teerlinck, I., Isono, M. and Exnar, I., J. Power Sources, Vol. 174, pp. 949953, 2007.Google Scholar