Published online by Cambridge University Press: 15 March 2011
In this study, we explored the synthesis of LiMnPO4 through hydrothermal methods using urea as the hydroxide ion source. The hydrothermally prepared LiMnPO4 was examined through x, ray diffraction, microscopy, surface area and electrochemical measurements. Small crystallites were formed and significant agglomeration of particles was observed. The effect of additives to control nucleation and growth of the LiMnPO4 is reported. None of the attempted additives led to the desired morphology. At a C/5 discharge rate, a capacity of about 53 mAh/g was observed for a carbon coated sample of hydrothermally prepared LiMnPO4.