Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T01:20:50.462Z Has data issue: false hasContentIssue false

Morphology and Domain Structure of Unsupported PbTiO3 Thin Films Prepared by Sol-Gel Process

Published online by Cambridge University Press:  15 February 2011

C. J. Lu
Affiliation:
National Laboratory of Solid State Microstructures Department of Physics, Nanjing University, Nanjing 210093, P.R. China, [email protected]
S. B. Ren
Affiliation:
National Laboratory of Solid State Microstructures Department of Physics, Nanjing University, Nanjing 210093, P.R. China, [email protected]
H. M. Shen
Affiliation:
National Laboratory of Solid State Microstructures Department of Physics, Nanjing University, Nanjing 210093, P.R. China, [email protected]
Y. N. Wang
Affiliation:
National Laboratory of Solid State Microstructures Department of Physics, Nanjing University, Nanjing 210093, P.R. China, [email protected]
Get access

Abstract

The morphology and domain structure of unsupported PbTiO3 thin films with fine grains (>200 nm) were investigated by TEM technique. The unsupported PbTiO3 thin films were successfully prepared by sol-gel process onto NaCI substrates and followed by dissolving away the substrates. Electron diffiraction patterns showed that the unsupported PbTiO3 thin films had slight <110> preferred orientation perpendicular to the film surfaces. Grain size and morphology vary significantly with the thickness of the films or the annealing temperatures. Even though the grain size is rather small (40–180 nm), the domains are clearly visible. Most of the grains show single domain, while some irregular and curved domain walls appear only in a small portion of the fine grains. The number of single-domained grains increases with decreasing grain size. Almost all domain walls observed are 90° walls.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lucuta, P.G., J. Am. Ceram. Soc. 72, 933 (1989).Google Scholar
2. Randall, C.A., Barber, D.J., and Whatmorre, R.W., J. Mater. Sci. 22, 925 (1987).Google Scholar
3. Lucuta, P.G., Teodorresku, V., and Vasiliu, F., Appl. Phys. A 37, 237 (1985).Google Scholar
4. Goo, E.K. W., Mishra, R.K., and Thomas, G., J. Appl. Phys. 52, 2940 (1981).Google Scholar
5. Arlt, G., Hennings, D., and With, G. de, J. Appl. Phys. 58, 1619 (1985).Google Scholar
6. Yamaji, A., Enomoto, Y., Kinoshita, K., and Murakami, T., J. Am. Ceram. Soc. 60, 97 (1977).Google Scholar
7. Klee, M., Mackens, U., and Veirman, A. De, Ferroelectrics 140, 211 (1993).Google Scholar
8. Huffman, M., Goral, J.P., Al-Jassim, M.M., and Echer, C., J. Vac. Sci. Technol. A 10, 1584 (1992).Google Scholar
9. Huffinan, M., Zhu, J., and AI-Jassim, M.M., Ferroelectrics 140, 191(1993).Google Scholar
10. Scott, J.F., Araujo, C.A. Paz de, and Mcmillan, L.D., Ferroelectrics 140, 219 (1993).Google Scholar
11. Lu, C.J., Wang, S.M., Zhao, J.H., Huang, G.Y., and Kuang, A X., Ferroelectrics 157, 375 (1994).Google Scholar
12. Lu, C.J., Wang, S.M., Kuang, A.X., and Huang, G.Y., Chinese Sci. Bull. (in Chinese) 38, 110 (1993).Google Scholar
13. Modak, A.R. and Dey, S.K., Ferroelectrics in press.Google Scholar
14. Hsueh, Cheng-Chen and Mecartney, Martha L., Mat. Res. Soc. Symp., 200, 219 (1990).Google Scholar
15. Goral, J.P., Huffinan, M. and Al-Jassim, M.M., Mat. Res. Soc. Symp. 200, 225 (1990).Google Scholar
16. Tsai, Feng and Cowley, J.M., Ferroelectrics 140, 203 (1993).Google Scholar
17. Tsai, Feng and Cowley, J.M., Ultramicroscopy 45, 55 (1992).Google Scholar
18. Mayers, S.A. and Chapin, N., Mat. Res. Soc. Symp. 200, 231 (1990).Google Scholar
19. Nakamura, T., Takashige, M., Terauch, H., Miura, Y., and Lawless, W.N., Jap. J. Appl. Phys. 23, 1265 (1984).Google Scholar
20. Neel, L., J. Phys. Radium. 17, 250 (1956); R.E. Behringer and R.S. Smith, J. Franklin Inst. 272, 14 (1961); C.O. Tiller and G.W. Clark, Phys. Rev. 110, 583 (1958).Google Scholar
21. Sakashita, Y., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 73, 7857 (1993).Google Scholar
22. Ren, S.B., Lu, C.J., Shen, H.M., and Wang, Y.N., Mat. Res. Soc. Symp. (1995 Fall Meeting, J5.2), to be published.Google Scholar