Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T03:44:20.283Z Has data issue: false hasContentIssue false

Morphological Studies of Bismuth Nanostructures Prepared by Hydrothermal Microwave Heating.

Published online by Cambridge University Press:  25 May 2012

Oxana V. Kharissova
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail [email protected]
Mario Osorio
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail [email protected]
Boris I. Kharisov
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail [email protected]
Edgar de Casas Ortiz
Affiliation:
Universidad Autónoma de Nuevo León, Monterrey, México. E-mail [email protected]
Get access

Abstract

Elemental bismuth nanoparticles and nanotubes were obtained via microwave hydrothermal synthesis starting from bismuth oxide (Bi2O3) in the range of temperatures 200-220oC for 10-45 min. The formed nanostructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Relationship between reaction parameters and shape of the formed nanostructures is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asthana, R.; Kumar, A.; Dahotre, N. B. (2005). Materials Processing and Manufacturing Science. 1 edition, Butterworth-Heinemann, 656 pp. Google Scholar
Boldt, R.; Kaiser, M.; Kohler, D.; Krumeich, F.; Ruck, M. (2010). High-yield synthesis and structure of double-walled bismuth nanotubes. Nano Lett., 10, 208210.Google Scholar
Cao, G. and Liu, D. (2008). Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science, 136(1), 4564.Google Scholar
Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. (1999). Advanced Inorganic Chemistry, 6th edition, Wiley-Interscience, 1376 pp. Google Scholar
Dresselhaus, M. S.; Lin, Y. M.; Rabin, O.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A. et al. . (2003). Nanowires and nanotubes. Mat. Sci. Engin., C, 23(1), 129140.Google Scholar
Fryxell, G. E. and Cao, G. (2007). Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors. Imperial College Press, 520 pp. Google Scholar
Guo, T. Nanoparticle radiosensitizers. (2006). Patent WO2006037081.Google Scholar
Kharisov, B. I., Kharissova, O. V., Ortiz-Mendez, U. (2012). Handbook of Less-Common Nanostructures. CRC Press, 863 pp. Google Scholar
Kharissova, O. V. and Rangel Cardenas, J. (2007). The Microwave Heating Technique for Obtaining Bismuth Nanoparticles, in Physics, Chemistry and Application of Nanostructures, World Scientific, pp.443-446.Google Scholar
Kharissova, O.V.; Osorio, M.; Garza, M. (2007). Synthesis of bismuth by microwave irradiation. MRS Fall Meeting. Boston, MA. (November 26-30, 2007). Abstract II5.42. p.773.Google Scholar
Kharissova, O. V. and Kharisov, B. I. (2008). Nanostructurized forms of bismuth. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 38(6), 491502.Google Scholar
Kharissova, O. V.; Osorio, M.; Kharisov, B. I.; José Yacamán, M.; Ortiz Méndez, U. (2010). A comparison of bismuth nanoforms obtained in vacuum and air by microwave heating of bismuth powder. Mater. Chem. Phys., 121, 489496.Google Scholar
Koch, C.; Ovid’ko, I.; Seal, S.; Veprek, S. (2007). Structural Nanocrystalline Materials: Fundamentals and Applications. 1 edition, Cambridge University Press, 364 pp. Google Scholar
Norman, N. C., Ed. (1997). Chemistry of Arsenic, Antimony and Bismuth. Springer; 1 edition. 496 pp. Google Scholar
Owen, J. H. G.; Miki, K.; Bowler, D.R. (2006). Self-assembled nanowires on semiconductor surfaces. J. Mat. Sci. 41(14), 45684603.Google Scholar
Penner, R. M; Zach, M. P., Favier, F. (2007). Methods for fabricating metal nanowires. United States Patent 7220346, http://www.freepatentsonline.com/7220346.html.Google Scholar
Rasche, B.; Seifert, G.; Enyashin, A. (2010). Stability and electronic properties of bismuth nanotubes. J. Phys. Chem. C, 114, 2209222097.Google Scholar
Sakka, S. (2004). Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications. 1 edition, Springer, 1980 pp. Google Scholar
Sergeev, G. B. (2006). Nanochemistry. Elsevier Science; 1 edition, 262 pp. Google Scholar
Soderberg, B. C. G. (2003). Transition metals in organic synthesis: highlights for the year 2000. Coord. Chem. Rev. 241(1), 147247.Google Scholar