Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:27:21.862Z Has data issue: false hasContentIssue false

Morphological Evolution with Layer Thickness in single crystal CeO2(110)/Si(100)

Published online by Cambridge University Press:  03 September 2012

Tomoyasu Inoue
Affiliation:
Department of Electronic Engineering, Iwaki Meisei University, Iwaki, Fukushima 970, Japan
Yasuhiro Yamamoto
Affiliation:
Department of Electronic Informatics, Hosei University, Koganei, Tokyo 184, Japan
Masataka Satoh
Affiliation:
Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184, Japan
Tetsu Ohsuna
Affiliation:
Department of Electronic Engineering, Iwaki Meisei University, Iwaki, Fukushima 970, Japan
Get access

Abstract

Surface morphology evolution of epitaxially grown CeO2(110) layers on Si(100) substrates is studied using atomic force microscopy (AFM) and reflection high energy electron diffraction (RHEED). The surface has a faceted structure; a stripe-appearance and triangular-shape in plan- and cross-sectional views, respectively. AFM measurements clarify that as the layer thickness increases, the cross-sectional shape changes from a gable roof shape toward trapezoidal, which is consistent with RHEED analyses. The width of the facet monotonically increases with the layer thickness, while its height saturates at ∼5 nm above 600 nm in thickness, which means that the surface approaches smooth morphology. Ion channeling analyses indicate that the thicker the layer, the better the crystalline quality at the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S. and Ueda, Y., Appl. Phys. Lett. 56, 1332 (1990).Google Scholar
[2] Yoshimoto, M., Nagata, H., Tsukahara, T., and Koinuma, H., Jpn. J. Appl. Phys. 29, L1199 (1990).Google Scholar
[3] Inoue, T., Osonoe, M., Tohda, H., Hiramatsu, M., Yamamoto, Y., Yamanaka, A., and Nakayama, T., J. Appl. Phys. 69, 8313 (1991).Google Scholar
[4] Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M. and Koinuma, H., Jpn. J. Appl. Phys. 30, L1136 (1991).Google Scholar
[5] Inoue, T., Ohsuna, T., Luo, L., Wu, X. D., Maggiore, C. J., Yamamoto, Y., Sakurai, Y. and Chang, J. H., Appl. Phys. Lett. 59, 3604 (1991).Google Scholar
[6] Inoue, T., Ohsuna, T., Yamamoto, Y., Sakurai, Y., Luo, L., Wu, X. D., Maggiore, C. J., Mater. Res. Soc. Symp. Proc. 237, 589 (1992).Google Scholar
[7] Luo, L., Wu, X. D., Dye, R. C., Muenchausen, R. E., Folton, S. R., Coulter, Y., Maggiore, C. J. and Inoue, T., Appl. Phys. Lett. 59, 2043 (1991).Google Scholar
[8] Inoue, T., Ohusuna, T., Yamada, Y., Wakamatsu, K., Itoh, Y., Nozawa, T., Sasaki, E., Yamamoto, Y. and Sakurai, Y., Jpn. J. Appl. Phys. 31, L1736 (1992).Google Scholar
[9] Yamamoto, Y., Satoh, M., Sakurai, Y., Inoue, T. and Ohsuna, T.: Jpn. J. Appl. Phys. 32, L620 (1993).Google Scholar
[10] Inoue, T., Obara, Y., Yamamoto, Y., Satoh, M. and Sakurai, Y.: Jpn. J. Appl. Phys. 32, L1765 (1993).Google Scholar
[11] Inoue, T., Ohsuna, T., Obara, Y., Yamamoto, Y., Satoh, M. and Sakurai, Y.: J. Cryst. Growth 131, 347 (1993).Google Scholar
[12] Yaegashi, S., Kurihara, T., Hoshi, H. and Segawa, H., Jpn. J. Appl. Phys. 33, 270 (1994).Google Scholar
[13] Inoue, T., Yamamoto, Y., Satoh, M., Ohsuna, T., Myoren, H. and Yamashita, T., Proc. Mater. Res. Soc. 341, 101 (1994).Google Scholar
[14] Geis, M. W., Flanders, D. C. and Smith, H. I., Appl. Phys. Lett. 35, 71 (1979).Google Scholar
[15] Chadi, D. J., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
[16] Satoh, M., Yamamoto, Y., Nakajima, S., Sakurai, Y., Inoue, T. and Ohsuna, T., Mater. Res. Soc. Symp. Proc. 312, 309 (1993).Google Scholar